
Lecture 7 

 

Multifactor design and 

analysis 



Factorial Design 

• A research design that includes two or more 
factors is called a factorial design 

• In an experiment, an independent variable is 
often called a factor, especially in 
experiments that include two or more 
independent variables 

• This kind of design is often referred to, by the 
number of its factors, as a two-factor design 
or a three-factor design 

• A research study with only one independent 
variable is often called a single-factor design 



Factorial Design 

• Each factor is usually denoted by a 
letter (e.g. A, B, C) 

• Factorial designs use a notation 
system that identifies both the number 
of factors and the number of values or 
levels that exist for each factor 

• e.g. caffeine (3 levels) and alcohol 
study (2 levels) would be described as 
3 x 2 two factor design 



Types of factors 

• FIXED - all population levels are 

present in the design (e.g. Gender, 

treatment condition, ethnicity, size of 

community, etc.) 

• RANDOM - the levels present in the 

design are a sample of the population 

to be generalized to (e.g. Classrooms, 

subjects, teacher, school district, 

clinic, etc.) 



Simple effects, main effects 

and interactions 

• The simple effects of a factor are contrasts 

between levels of one factor at a single 

level of another factor. 

• The main effects of a factor are contrasts 

between levels of one factor averaged over 

all levels of another factor. 

• The interaction effect measures differences 

between the simple effects of one factor at 
different levels of the other factor.  



Main effects and interactions 

• An interaction between factors occurs 
whenever the mean differences between 
individual treatment conditions, or cells, are 
different from what is predicted from the 
overall main effect of the factors 

• When the effects of one factor depend on the 
levels of a second factor, then there is an 
interaction between the factors 

• When the results of a two-factor study are 
graphed, the existence of nonparallel lines 
(lines that cross or converge) is an indication 
of an interaction between the two factors 

 



Main effects of caffeine and 

alcohol: no interaction 

alcohol and caffeine no interaction
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Main effects of caffeine and 

alcohol: with interaction 

alcohol and caffeine interaction
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A simple example 

• From major effects of factor A, we can see A2 has 

a higher effect than A1; From major effects of factor 

B, B2 has a higher effect than B1;  

• But, the combination A2B2 does not have highest 

value. Actually, A2B1 gives the highest 

performance.  

B1 B2 Row mean Row effect 

A1 1 3 2 -1.25 

A2 5 4 4.5 1.25 

Column mean 3 3.5 3.25 

Column effect  -0.25 0.25 



Factorial Designs  

• Advantages of factorial designs 

–A greater precision can be 
obtained in estimating the overall 
main factor effects. 

–Interaction between different 
factors can be explored. 

–Additional factors can help to 
extend validity of conclusions 
derived. 



Examples of models 

• single factor: 

   y = µ + gene + error  

• two factors: 

   y = µ + treatment + gene + error 

• two factors including interaction term:    

   y = µ + treatment + gene + treatment.gene 
+ error  

• four factors: 

   y = µ + treatment + gene + dye + array + 
error 



Two-way ANOVA 

• Allows two different treatments to be 

examined simultaneously. 

• In its simplest form, it is all but 

identical to 1 way, except that you 

calculate 2 different treatment sums 

of squares 



Two-way ANOVA 

• Get information about the main effect 
as well as the interaction effect 

• Will be computing multiple F-ratios 

• Can be both between-subjects, both 
within subjects, or mixed design 

• Each combination of factor A and 
factor B creates a cell (what we are 
comparing is the means of each cell) 



No interaction 

  Factor B Mean 

B1 B2 … Bb 

Factor A A1 y11 y12 … y1b 

A2 y21 y22 … y2b 

⁞     …     

Aa ya1 ya2 … yab 

Mean … 
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No replications 



No replications 

• When the data has no replications, we 

could not estimate interactions. 

• Here 
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The linear model 

• The formal model underlying 2-Way 

ANOVA, with 2 treatments A and B 

• yijk = μ + αi +  βj + εijk 

• yijk is the kth replicate of treatment A level i 

and treatment B level j 

• αi is the effect of the ith level of treatment A 

(= difference between μ and mean of all 

data in this treatment. 

• βj is the effect of the jth level of treatment B 

(= difference between μ and mean of all 

data in this treatment. 



Hypotheses to test 

• The hypothesis for rows: 

• H0: α1 = α2 = … = αi = …= αa  (αi is mean 
value of the ith level for A - Overall mean 
value) 

• H1: αi  (i =1,2, … , a)  are not equal 

• The hypothesis for columns: 

• H0: β1 = β2 = … = βj = …= βb  (βj is mean 
value of the jth level for B - Overall mean 
value) 

• H1: βj  (j =1,2, … , b)  are not equal 



Sums of squares 

• Then the sums of squares are 
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Mean squares and test 

• For factor A 

• For factor B 

• For random errors 

• Test for significance of A 

 

 

• Test for significance of B  
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Analysis of variance table 

for the two factors 

Source Degrees of 

freedom 

Sum of 

squares 

Mean square F ratio 

Factor A fA=a-1 SSA MSA=SSA/(a-1) MSA/MSε 

Factor B fB=b-1 SSB MSB=SSB/(b-1) MSB/MSε 

Error fε=(a-1)(b-1) SSε MSε=SSε/((a-1)(b-1)) 

Total T fT=ab-1 SST 



Significance test 
• Compare the statistic F with the threshold 

value F under  given significant level , then 
give the decision on H0 

• F test, significant level=, corresponding 
to the threshold F  

• If FA>F, reject H0, i.e. the differences 
between the means of factor A are 
significant. In other words, Factor A has 
significant effects on observations.  

• If FB > F, reject H0, i.e. the differences 
between the means of factor B are 
significant. In other words, Factor B has 
significant effects on observations 



An example 
• Radioactive isotope in milk. Suppose that 

the concentrations of the radioactive isotope 

measured in picocuries per liter by three 

different methods in specimens of milk from four 

dairies are as follows: 

Dairy (A) Method (B)  yi.  

Method 1 Method 2 Method 3 

1 6.4 3.2 6.9 5.5 

2 8.5 7.8 10.1 8.8 

3 9.3 6.0 9.6 8.3 

4 8.8 5.6 8.4 7.6 

y.j 8.25 5.65 8.75 mean=7.55 



Sums of squares 
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ANOVA 

Source Degree of 

freedom 
Sum of 

squares 

Mean 

square 

F ratio Pr>F 

Dairy 3 18.99 6.33 13.86 0.004** 

Method 2 22.16 11.1 24.26 0.001** 

Error 6 2.74 0.46 

Total 11 43.89 



Significance test 

• ANOVA tables can have many different 

treatments included.  The skill in 

ANOVA is not working out the sums of 

squares, it is the interpretation of 

ANOVA tables. 

• The clues to look for are always in the 

df column.  A treatment with n levels 

has n-1 df - this always applies and 

allows you to infer the model a 

researcher was using to analyze data. 



With replications 



With replications: a×b×r  

  Factor B 

B1 B2 … Bb  

Factor A A1 y111 y121 … y1b1 

y112 y122 … y1b2 

⁞ ⁞ … ⁞ 

y11r y12r … y1br 

A2 y211 y221 … y2b1 

y212 y222 … y2b2 

⁞ ⁞ … ⁞ 

y21r y22r … y2br 

⁞ ⁞ ⁞ … ⁞ 

Aa  ya11 ya21 … yab1 

ya12 ya22 … yab2 

⁞ ⁞ … 

ya1r ya2r … yabr 



Interaction 

• We denote 
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The linear model 

• The formal model underlying 2-Way ANOVA, 
with 2 treatments A, B and their interaction 

• yijk = μ + αi + βj + +(αβ)ij+ εijk 
• yijk is the kth replicate of Treatment A level i 

and treatment B level j 

•  αi is the effect of the ith level of treatment A (= 
difference between μ and mean of all data in 
this treatment. 

•  βj is the effect of the jth level of treatment B (= 
difference between μ and mean of all data in 
this treatment. 

• (αβ)ij is the interaction effect of the ith level of 
treatment A and the jth level of treatment B. 

 



Assumptions 

• For factor A  

• H01：1= 2 = ··· = a = 0 

•  For factor B  

• H02：1= 2 = ··· = b = 0 

•  For interactions  

•  H03：( )ij = 0; for any i,  j 

 



Sums of squares 

• Then the sum of squares are 

 

 

 

 

 

 

 

• SST=SSA+SSB+SSAB+SSε  
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Mean squares 

• For factor A 

 

• For factor B 

 

• For interaction 

 

• For random errors 
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Significance test 

• Test for significance of A 

 

• Test for significance of B 

 

• Test for significance of interaction 
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The analysis of variance 

table for the two factors 

Source Sum of 

squares 

Degrees of 

freedom 

Mean square F ratio 

Factor A SSA fA=a-1 MSA=SSA/(a-1) MSA/MSε 

Factor B SSB fB=b-1 MSB=SSB/(b-1) MSB/MSε 

Interaction 

AB 

SSAB fAB= 

(a-1)(b-1) 

MSAB= 

SSAB/[(a-1)(b-1)] 

MSAB/MSε 

 

Error SSε fε=ab(r-1) MSε=SSε/[ab(r-1)] 

Total T SST fT=abr-1 



For different models 

• We know that  

• yijk = μ + αi + βj +(αβ)ij+εijk 

• For fixed-effect model,  

 

 

• For random-effect model, 
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Expected mean squares 
Source Degrees of 

freedom 
Mean 

square 

Expected MS 

Fixed model Mixed model 

Factor A fA=a-1 MSA= 

SSA/(a-1) 

Factor B fB=b-1 MSB= 

SSB/(b-1) 

Interaction 

AB 

fAB= 

(a-1)(b-1) 

MSAB=SSAB

/[(a-1)(b-1)] 

Error fε=ab(r-1) MSε=Ssε 

/[ab(r-1)] 

Total T fT=abr-1 

22

A  br

22

B  ar

22

AB  r

22

AB

2

A   rbr

22

AB

2

B   rar

22

AB  r

2


2



Why do we need to know EMS? 



To estimate the variance components!  

For fixed-effect models 
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To estimate the variance components!  

For random-effect models 
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Interpreting the interaction term 

• The hardest part of 2 way ANOVA is trying 

to explain what a significant interaction 

term means, in terms that make sense to 

most people!  Formally it is easy; you are 

testing H0: MS for interaction term is 

same population as MS for error. 

• It means that you can’t reliably predict the 

effect of Treatment A at level a with B at 

level b, knowing only the effect of Aa and 

Bb on their own. 



Standard errors for means 

• For factor A, 

 

 

• For factor B, 
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Interval estimates for means 

• The student t with ab(r-1) degrees of 

freedom is required for interval estimates 

of the cell means. The interval estimate for 

a cell mean is   

 

 

• When the significance level is 0.05 

• Also called 95% confidence interval  
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An example 
• Tensile strength (psi) of asphaltic concrete 

specimens for two aggregate types with 

each of four compaction methods 

Aggregate 

type (A) 

Compaction method (B) 

Kneading 

Static Regular Low Very low 

Basalt 68 126 93 56 

63 128 101 59 

65 133 98 57 

Silicious 71 107 63 40 

66 110 60 41 

66 116 59 44 



Cell means and means for 

two factors 

Aggregate 

type 

Compaction method Aggregate 

means 

(      ) 
Kneading 

Static Regular Low Very low 

Basalt 65.3 129.0 97.3 57.3 87.3 

Silicious 67.7 111.0 60.7 41.7 70.3 

Compaction 

means (       ) 

66.5 120.0 79.0 49.5         78.8 
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Sums of squares  
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ANOVA 

Source Degree of 

freedom 

Sum of 

squares 

Mean 

square 

F ratio Pr>F 

Aggregate 1 1734.00 1734.00 182.53 0.000** 

Compaction 3 16243.50 5414.50 569.95 0.000** 

Interaction 3 1145.00 381.67 40.18 0.000** 

Error 16 152.00 9.50 

Total 23 19274.50 



Estimation of variance components 

and their contribution 

Source Variance Proportion (%)  

Aggregate 143.71 12.20 

Compaction 900.83 76.47 

Interaction 124.06 10.53 

Error 9.50 0.81 

Total 1178.10 



Nested Experiments 



Nested Experiments 

• In some two-factor experiments the level of 

one factor , say B, is not “cross” or “cross 

classified” with the other factor, say A, but 

is “NESTED” with it. 

• The levels of B are different for different 

levels of A. 

• For example:  2 Areas  (Study vs Control) 

• 4 sites per area, each with 5 replicates. 

• There is no link from any sites on one area 

to any sites on another area. 



Nested Experiments 

• That is, there are 8 sites, not 2. 

          Study Area (A)                          Control Area (B) 

 
S1(A)   S2(A)   S3(A)    S4(A)          S5(B)   S6(B)    S7(B)    S8(B) 

 

 X            X           X          X                   X        X           X           X 

 X            X           X          X                   X        X           X           X 

 X            X           X          X                   X        X           X           X 

 X            X           X          X                   X        X           X           X 

 X            X           X          X                   X        X           X           X 

 

X = replications 

 

Number of sites (S)/replications need not be equal with each sites.  

Analysis is carried out using a nested ANOVA not a two-way ANOVA. 



• A Nested design is not the same as a two-

way ANOVA which is represented by: 

•    A1                  A2                A3 

• B1    X X X X X        X X X X X     X X X X X 

• B2    X X X X X        X X X X X     X X X X X 

• B3    X X X X X        X X X X X     X X X X X 

• Nested, or hierarchical designs are very 

common in environmental effects  monitoring 

studies.  There are several  “Study” and 

several  “Control” Areas. 

 

 

 

Nested Experiments 



Objective 

• The nested design allows us to test two things: 

(1) difference between “Study” and “Control” 

areas, and (2) the variability of the sites within 

areas.  

• If we fail to find a significant variability among 

the sites within areas, then a significant 

difference between areas would suggest that 

there is an environmental impact.  

• In other words, the variability is due to 

differences between areas and not to 

variability among the sites. 



Objective 

• In this kind of situation, however, it is 

highly likely that we will find variability 

among the sites. 

• Even if it should be significant, 

however, we can still test to see 

whether the difference between the 

areas is significantly larger than the 

variability among the sites with areas. 



Statistical Model 

• i indexes “A” (often called the “major 

factor”) 

• (i)j indexes “B” within “A” (B is often 

called the “minor factor”) 

• (ij)k indexes replication 

• i = 1, 2, …, a 

• j = 1, 2, …, b 

• k = 1, 2, …, r 

yijk = m + αi + β(i)j + (ij)k 



Model (continued) 

• and 
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Model (continue) 

• Or, 

• SST = SSA + SS(A)B+ SSε 

             

• Degrees of freedom: 

• fT=abr-1, fA=a-1, f(A)B=a(b-1), fε=ab(r-1) 



Example 
• a=3, b=4, r=3;  3 Areas, 4 sites within each area, 3 

replications per site, total of (abr = 36) data points 

        M1           M2                    M3                Areas 

1      2      3      4          5     6     7     8          9    10    11    12     

Sites 

10     12      8       13          11     13      9     10          13     14      7       10 

14      8      10      12          14     11     10      9          10     13      9         7  

 9      10     12      11           8       9       8       8          16     12      5         4 

11     10     10      12          11     11      9       9          13     13      7        7          

           10.75                                10.0                                10.0 

                                                    10.25 
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Example (continue) 

• SSA = 4 x 3 [10.752 + 10.02 + 10.02]- 4 x 3 x 3 

x10.252=4.5 

• SS(A)B = 3 [(11-10.75)2 + (10-10.75)2 + (10-

10.75)2 + (12-10.75)2 +(11-10)2 + (11-10)2 + (9-

10)2 + (9-10)2 + (13-10)2 + (13-10)2 + (7-10)2 + 

(7-10)2] 

        =  3 x 42.75 = 128.25 

• SST  = 102+ 142+…+42 -4 x 3 x 3 x 

10.252=240.75 

• SSε = 108.0 



ANOVA table for the example 

• Nested ANOVA: Observations versus Area, Sites 

Source       DF            SS              MS          F       P 

Area            2          4.50              2.25   0.158   0.856 

Sites (A)B   9      128.25            14.25   3.167   0.012** 

Error          24     108.00              4.50 

Total          35     240.75 

• What are the “proper” ratios? 

E(MSA) = σ2 + rσ 2
(A)B + rbσ 2

A 

E(MS(A)B)= σ2 + rσ 2
(A)B  

E(MSε) = σ2 

 

= MSA/MS(A)B 

= MS(A)B/MSε  



Summary 

• Nested designs are very common in 

environmental monitoring 

• It is a refinement of the one-way ANOVA 

• All assumptions of ANOVA hold: normality 

of residuals, constant variance, etc. 

• Need to be careful about the proper ratio 

of the Mean squares. 

• Always use graphical methods e.g. 

boxplots and normal plots as visual aids 

to aid analysis. 



Let’s work on previous data together 

• Tensile strength (psi) of asphaltic concrete 

specimens for two aggregate types with 

each of four compaction methods 

Aggregate 

type (A) 

Compaction method (B) 

Kneading 

Static Regular Low Very low 

Basalt 68 126 93 56 

63 128 101 59 

65 133 98 57 

Silicious 71 107 63 40 

66 110 60 41 

66 116 59 44 


