
Lecture 6

More on Complete 

Randomized Block Design 

(RBD)



Multiple test



Multiple test

• The multiple comparisons or multiple 

testing problem occurs when one 

considers a set of statistical inferences 

simultaneously.

• For a levels and their means                     ,

testing the following       hypotheses:
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Fisher Least Significant 

Different (LSD) Method
• This method builds on the equal variances 

t-test of the difference between two means.

• The test statistic is improved by using MSε

rather than sp
2.

• It is concluded that and      differ at α
significance level if > LSD, where
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LSD

• Where ri and rj are number of 

observations under level i and j.

• And ardf
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Experiment-wise Type I error rate 

(αE) (the effective Type I error)

• The Fisher’s method may result in an increased 
probability of committing a type I error.

• The experiment-wise Type I error rate is the 
probability of committing at least one Type I error 
at significance level of α. It is calculated by

αE = 1-(1 – α)C

where C is the number of pairwise comparisons 
(all: C = a(a-1)/2)

• The Bonferroni adjustment determines the 
required Type I error probability per pairwise 
comparison (α) , to secure a pre-determined 
overall αE.



• The procedure:

• Compute the number of pairwise 

comparisons (C)

[all: C=a(a-1)/2], where a is the number of 

populations.

• Set α = αE/C, where αE is the true probability 

of making at least one Type I error (called 

experimentwise Type I error).

• It is concluded that and       differ at α/C 

significance level if

Bonferroni adjustment
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Duncan’s multiple range test

• The Duncan Multiple Range test uses different 
Significant Difference values for means next to 
each other along the real number line, and 
those with 1, 2, … , a means in between the 
two means being compared.

• The Significant Difference or the range value:

• where rα,p, ν is the Duncan’s Significant Range 
Value with parameters p (= range-value) and v
(= MSε degree-of-freedom), and experiment-
wise alpha level α (= αjoint).
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Duncan’s Multiple Range Test
• MSε is the mean square error from the ANOVA 

table and n is the number of observations used to 
calculate the means being compared.

• The range-value is:

• 2 if the two means being compared are 
adjacent

• 3 if one mean separates the two means being 
compared 

• 4 if two means separate the two means being 
compared 

• …



Significant ranges for Duncan’s Multiple 

Range Test



Tukey–Kramer method

• A procedure which controls the 
experimentwise error rate is “Tukey’s
honestly significant difference test ”. It is 
used for levels with the same replications. 
Assume r1=r2=…=ra=r.

• Basic idea: if      is true, the value            
should not be large. W: the rejection region 
of multiple tests (i.e. at least one      is 
rejected )    

• W=
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Tukey–Kramer method

• We need to determine c s.t. when all the     

are true, the probability of type I error is α,

i.e. P(W)=α    
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Tukey–Kramer method

• MSε is mean square of errors in ANOVA, 

and is unbiased estimator of 𝜎2. It is 

independent with    , so 

~ t(fε)

• They are the largest and smallest order 

statistics from a sample (a observations, 

obey t(fε)). Denote 
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Tukey–Kramer method

• Then 

• So the rejection region of these multiple 

tests with significant level α is
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Scheffe method

• For different number of replications

• Under

~ N(0,           ) 

• Replace 𝜎2 by MSε, and MSε is 

independent with     , so

~ F(1, fε)

• If       is true, Fij should not be large. 
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Scheffe method

• When all the     are true, the rejection 

region of multiple tests is

• Scheffe proved that          approximately 

obeys F(a-1, fε). Given significant level α, 

then 

• The rejection region is
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Test of normality



Test of normality

• Many test procedures that we have 

developed rely on the assumption of 

Normality.  

• There are several methods of assessing 

whether data are normally distributed or 

not (H0: the data obeys Normal 

distribution; H1: not obey Normal 

distribution). 



Test of normality

• They fall into two broad categories: 

graphical and statistical. The most 

common are: 

• 1.Graphical 
• Q-Q probability plots 

• Cumulative frequency (P-P) plots 

• 2. Statistical 
• Kolmogorov-Smirnov test 

• Shapiro-Wilk test 



Q-Q probability plots 

• Q-Q plots display the observed values 

against normally distributed data 

(represented by the line). 

• Normally distributed data fall along the line. 

Normal Q-Q plot: Normally distribution data Normal Q-Q plot: Non-normally distribution data
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P-P plots

• P-P (cumulative) plot displays the cumulative 

probabilities against normally distributed data 

(represented by the line). 

• Normally distributed data fall along the line.

Normal P-P plot: Normally distribution data Normal P-P plot: Non-normally distribution data
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Statistical tests

• Statistical tests for normality are more precise 
since actual 

• probabilities are calculated. 

• The Kolmogorov-Smirnov and Shapiro-Wilks
tests for normality calculate the probability that 
the sample was drawn from a normal 
population. 

• The hypotheses used are: 

• H0: The sample data are not significantly 
different than a normal population. 

• Ha: The sample data are significantly different 
than a normal population. 



Statistical tests

• Typically, we are interested in finding a difference 
between groups. When we are, we ‘look’ for small 
probabilities. 

• If the probability of finding an event is rare (less 
than 5%) and we actually find it, that is of interest. 
When testing normality, we are not looking for a 
difference. 

• In effect, we want our data set to be no different 
than normal. So when testing for normality: 

• Probabilities > 0.05 mean the data are normal. 

• Probabilities < 0.05 mean the data are NOT 
normal. 



• Based on comparing the observed 

frequencies and the expected frequencies

• Let                         be the cdf for the 

distribution.

• In the uniform(0,1) case: 

• Compare this to the “empirical distribution 

function”:

Kolmogorov-Smirnov 

Normality Test 

x)P(X(x) i F
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• If X1, X2, …, Xn really come from the 

distribution with cdf F, the distance

should be small.

• Example: Suppose we have 7 observations:

• 0.6 0.2 0.5 0.9 0.1 0.4 0.2

• Put them in order:

• 0.1 0.2 0.2 0.4 0.5 0.6 0.9

 F(x)- (x)F̂ max   D D n
x

n 

Kolmogorov-Smirnov 

Normality Test 



Kolmogorov-Smirnov Normality Test 

• Now the empirical cdf is:
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Kolmogorov-Smirnov Normality Test 

• Let X(1), X(2), …,X(n) be the ordered sample.

• Then Dn can be estimated by

• Where

• (assuming non-repeating values)
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Kolmogorov-Smirnov Normality Test 

• We reject that this sample came from the 

proposed distribution if the empirical cdf is 

too far from the true cdf of the proposed 

distribution

• i.e.: We reject if Dn is too “large”.



Kolmogorov-Smirnov Normality Test 

• In the 1930’s, Kolmogorov and Smirnov 

showed that

• So, for large sample sizes, you could 

assume

• and find the value of t that makes the right 

hand side 1-α for an α level test.
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Kolmogorov-Smirnov Normality Test 

• For small samples, people have worked 

out and tabulated critical values, but there 

is no nice closed form solution.

• J. Pomeranz (1973)

• J . Durbin (1968)

• Good approximations for n>40:
α 0.20 0.10 0.05 0.02 0.01

CV

n

0730.1

n

2239.1

n

3581.1

n

5174.1

n

6276.1



Kolmogorov-Smirnov Normality Test 

• From a table, the critical value for a 0.05 

level test for n=7 is 0.483.

• So we cannot reject H0, i.e. the data obeys 

Normal distribution.

0.4830.2571429  
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Shapiro-Wilk test

• The test statistic is:

• Where x(i) is the ith order statistic

• The constants ai are given by

• m1, ..., mn are the expected values of the order 
statistics of independent and identically 
distributed random variables sampled from the 
standard normal distribution, and V is the 
covariance matrix of those order statistics.
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Shapiro-Wilk test

• The user may reject the null hypothesis if 

is too small 

• W should be closed to 1 under H0. The 

rejection region is

• Where  

c}{W 

 c)P(W



Example

• The data from FDP activities of mice.

• Put the data in order and divide them into 

two. 

Obs 1 2 3 4 5 6 7 8 

x 3.83 3.16 4.70 3.97 2.03 2.87 3.65 5.09 

 

Obs in 

order 

1 2 3 4 5 6 7 8 

x 2.03 2.87 3.16 3.65 3.83 3.97 4.70 5.09 

 



Example

• So

• From the reference table of W, 

W(8.0.05)=0.818<W, so we cannot reject H0. 

Order ai x(n+1-i) x(i) di=x(n+1-i)-

x(i)

aidi

1 0.6052 5.09 2.03 3.06 1.851912

2 0.3164 4.70 2.87 1.83 0.579012

3 0.1743 3.97 3.16 0.81 0.141183

4 0.0561 3.83 3.65 0.18 0.010098

Total 2.582205
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Choosing the methods

• Which normality test should I use? 

• Kolmogorov-Smirnov: 

– More suitable for large samples. 

• Shapiro-Wilk: 

– Works best for small data sets



Test of homogeneity



Test of homogeneity

• If we have various groups or levels of a 

variable, we want to make sure that the 

variance within these groups or levels is 

the same. It is the basic assumption for 

ANOVA.

• H0: 

• H1: not H0
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Test of homogeneity

• Some common methods:

• 1. Hartley test: only used for the same 

sample size for each level.

• 2. Bartlett test: sample size may be 

different, but each size>=5

• 3. Adjusted Bartlett test: sample size may 

be different, and no restriction on size



Hartley test

• The numbers of replications are the same 

for each level, i.e. 

• Hartley proposed the statistic: 

• The values of H under H0 can be 

simulated, and denote the distribution as 

H(a, f), f=r-1
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Hartley test

• Under H0, the value of H should be close 

to 1. 

• Given significance level α, the rejection 

region should be 

• Where                is the 1- α quantile of H 

distribution.
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Bartlett test

• The ith sample variance is

• Where 

• We know that  

• It is the (average) arithmetic mean of 
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Bartlett test
• Denote geometric mean

• Where

• It is true that

• So under H0,          should be close to 1. If it 

is too large, reject H0. Rejection region is
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Bartlett test

• Bartlett proved that: for large sample, one 

function of          approximately obeys

• i.e.

• Where   

is always larger than 1.
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Bartlett test

• Taking the statistic 

• The rejection region is

• Here B approximately obeys     . So the 

method is more suitable for data with more 

than 5 replications in each level.     
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Adjusted Bartlett test

• Box proposed the adjusted Bartlett statistic

• B and C are given above. And

• Under H0, B’ approximately obeys F(f1, f2)
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Adjusted Bartlett test

• The rejection region is

• Sometimes, f2 is not an integer. We can 

use Interpolation method of the quantiles

for F distribution.
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Example

• Testing folic acid content for teas from 4 

locations.
 

Level Data Rep Sum Mean 
SS within 

groups 

1A  7.9 6.2 6.6 8.6 8.9 10.1 9.6 71 r  9.571 T  8.27 83.121 Q  

2A  5.7 7.5 9.8 6.1 8.4   52 r  5.372 T  7.50 30.112 Q  

3A  6.4 7.1 7.9 4.5 5.0 4.0  63 r  9.343 T  5.82 03.123 Q  

4A  6.8 7.5 5.0 5.3 6.1 7.4  64 r  1.384 T  6.35 61.54 Q  

 24r  4.168T   
77.41S

 

 



Example

• For Bartlett test,

• And MSε=2.09. Then 
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Example

• Given α=0.05,

• So we cannot reject H0, i.e. we agree with 

that 
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Example

• For Adjusted Bartlett test,

• Given α=0.05,

• We cannot reject H0

3141 f
 

4.682
10856.1

14
22 






C
f

9.743
4.68220856.12

4.682



A

 
322.0

0856.1970.09.7433

0856.1970.04.682





B

    '60.2,34.682,3 95.095.0 BFF 



Data transformation

• Data transformation is used to make your 

data obey Normal distribution.

• Three normal transformation methods：

a) No need for transformation

b) Use square root transformation

c) Use logarithmic transformation

d) Use reciprocal transformation



Let’s work on the previous example together 

Mutants Rep I Rep II Rep III

A 10.9 9.1 12.2

B 10.8 12.3 14.0

C 11.1 12.5 10.5

D 9.1 10.7 10.1

E 11.8 13.9 16.8

F 10.1 10.6 11.8

G 10.0 11.5 14.1

H 9.3 10.4 14.4

• Do the randomization 

of the three blocks

• Build the ANOVA table 

for the observed data

• Multiple test by LSD

• Normality test by Q-Q 

and P-P plot 

• What else do we want? 

• Orthogonal contrasts


