Lecture 6 More on Complete Randomized Block Design (RBD)

Multiple test

Multiple test

- The multiple comparisons or multiple testing problem occurs when one considers a set of statistical inferences simultaneously.
- For *a* levels and their means $\mu_1, \mu_2, \cdots, \mu_a$, testing the following $\begin{pmatrix} a \\ 2 \end{pmatrix}$ hypotheses:

$$H_0^{ij}: \mu_i = \mu_j, i < j, i, j = 1, 2, \cdots, a$$

Fisher Least Significant Different (LSD) Method

- This method builds on the equal variances t-test of the difference between two means.
- The test statistic is improved by using MS_{ϵ} rather than s_{ρ}^{2} .
- It is concluded that \overline{y}_i and \overline{y}_j differ at α significance level if $|\overline{y}_i \overline{y}_j| > \text{LSD}$, where

$$LSD = t_{\alpha/2, df_{\varepsilon}} \sqrt{MS_{\varepsilon}(\frac{1}{r_{i}} + \frac{1}{r_{j}})}$$

LSD

• Where r_i and r_j are number of observations under level *i* and *j*.

• And
$$df_{\varepsilon} = \sum_{i=1}^{a} r_i - a$$

Experiment-wise Type I error rate (α_E) (the effective Type I error)

- The Fisher's method may result in an increased probability of committing a type I error.
- The experiment-wise Type I error rate is the probability of committing at least one Type I error at significance level of α. It is calculated by

 $\alpha_E = 1 - (1 - \alpha)^C$ where C is the number of pairwise comparisons (all: C = a(a-1)/2)

• The Bonferroni adjustment determines the required Type I error probability per pairwise comparison (α), to secure a pre-determined overall α_E .

Bonferroni adjustment

- The procedure:
 - Compute the number of pairwise comparisons (C)
 [all: C=a(a-1)/2], where a is the number of populations.
 - Set $\alpha = \alpha_E/C$, where α_E is the true probability of making at least one Type I error (called *experimentwise Type I error*).
 - It is concluded that \overline{y}_i and \overline{y}_j differ at α/C significance level if

$$\left|\overline{y}_{i} - \overline{y}_{j}\right| > t_{\alpha/(2C), df_{\varepsilon}} \sqrt{MS_{\varepsilon}(\frac{1}{r_{i}} + \frac{1}{r_{j}})}$$

Duncan's multiple range test

- The Duncan Multiple Range test uses different Significant Difference values for means next to each other along the real number line, and those with 1, 2, ..., *a* means in between the two means being compared.
- The Significant Difference or the range value:

$$R_p = r_{\alpha, p, \nu} \sqrt{MS_{\varepsilon}/n}$$

• where $r_{\alpha,p,v}$ is the Duncan's Significant Range Value with parameters p (= range-value) and v(= MS_{ϵ} degree-of-freedom), and experimentwise alpha level α (= α_{joint}).

Duncan's Multiple Range Test

- MS_{ϵ} is the mean square error from the ANOVA table and n is the number of observations used to calculate the means being compared.
- The range-value is:
 - 2 if the two means being compared are adjacent
 - 3 if one mean separates the two means being compared
 - 4 if two means separate the two means being compared

•

Significant ranges for Duncan's Multiple Range Test

Critical Po	oints fo	r Dun	can's	Multip	le Rai	nge St	tatistic	AL	PHA =	0.05		
Degrees of						р						
freedom v	2	3	4	5	6	7	8	9	10	20	50	100
1	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00
2	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09	6.09
3	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50
4	3.93	4.01	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02	4.02
5	3.64	3.74	3.79	3.83	3.83	3.83	3.83	3.83	3.83	3.83	3.83	3.83
6	3.46	3.58	3.64	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68	3.68
7	3.35	3.47	3.54	3.58	3.60	3.61	3.61	3.61	3.61	3.61	3.61	3.61
8	3.26	3.39	3.47	3.52	3.55	3.56	3.56	3.56	3.56	3.56	3.56	3.56
9	3.20	3.34	3.41	3.47	3.50	3.52	3.52	3.52	3.52	3.52	3.52	3.52
10	3.15	3.30	3.37	3.43	3.46	3.47	3.47	3.47	3.47	3.48	3.48	3.48
11	3.11	3.27	3.35	3.39	3.43	3.44	3.45	3.46	3.46	3.48	3.48	3.48
12	3.08	3.23	3.33	3.36	3.40	3.42	3.44	3.44	3.46	3.48	3.48	3.48
13	3.06	3.21	3.30	3.35	3.38	3.41	3.42	3.44	3.45	3.47	3.47	3.47
14	3.03	3.18	3.27	3.33	3.37	3.39	3.41	3.42	3.44	3.47	3.47	3.47
15	3.01	3.16	3.25	3.31	3.36	3.38	3.40	3.42	3.43	3.47	3.47	3.47
16	3.00	3.15	3.23	3.30	3.34	3.37	3.39	3.41	3.43	3.47	3.47	3.47
17	2.98	3.13	3.22	3.28	3.33	3.36	3.38	3.40	3.42	3.47	3.47	3.47
18	2.97	3.12	3.21	3.27	3.32	3.35	3.37	3.39	3.41	3.47	3.47	3.47
19	2.98	3.11	3.19	3.26	3.31	3.35	3.37	3.39	3.41	3.47	3.47	3.47
20	2.95	3.10	3.18	3.25	3.30	3.34	3.36	3.38	3.40	3.47	3.47	3.47
30	2.89	3.04	3.12	3.20	3.25	3.29	3.32	3.35	3.37	3.47	3.47	3.47
40	2.86	3.01	3.10	3.17	3.22	3.27	3.30	3.33	3.35	3.47	3.47	3.47
60	2.83	2.98	3.08	3.14	3.20	3.24	3.28	3.31	3.33	3.47	3.48	3.48
100	2.80	2.95	3.05	3.12	3.18	3.22	3.26	3.29	3.32	3.47	3.53	3.53
inf	2.77	2.92	3.02	3.09	3.15	3.19	3.23	3.26	3.29	3.47	3.61	3.67

- A procedure which controls the experimentwise error rate is "Tukey's honestly significant difference test ". It is used for levels with the same replications. Assume $r_1 = r_2 = ... = r_a = r$.
- Basic idea: if H_0^{ij} is true, the value $|\overline{y}_i \overline{y}_j|$ should not be large. W: the rejection region of multiple tests (i.e. at least one H_0^{ij} is rejected)
- W= $\bigcup_{i < j} \left\{ \left| \overline{y}_i \overline{y}_j \right| > c \right\}$

• We need to determine *c* s.t. when all the H_0^{ij} are true, the probability of type I error is α , i.e. $P(W) = \alpha$ $P(W) = P\left(\bigcup_{i < i} \{|\overline{y}_i - \overline{y}_j| > c\}\right) = 1 - P\left(\bigcap_{i < j} \{|\overline{y}_i - \overline{y}_j| \le c\}\right)$

$$= 1 - P\left(\max_{i < j} \left| \overline{y}_i - \overline{y}_j \right| \le c \right) = P\left(\max_{i < j} \left| \overline{y}_i - \overline{y}_j \right| > c \right)$$
$$= P\left(\max_{i < j} \left| \frac{\overline{y}_i - \overline{y}_j}{\sqrt{MS_{\varepsilon}/r}} \right| > \frac{c}{\sqrt{MS_{\varepsilon}/r}} \right)$$

all hypothesises are true
=
$$P\left(\max_{i < j} \left| \frac{(\overline{y}_i - \mu_i) - (\overline{y}_j - \mu_j)}{\sqrt{MS_{\varepsilon}/r}} \right| > \frac{c}{\sqrt{MS_{\varepsilon}/r}}\right)$$

$$= P\left(\max_{i < j} \left(\frac{\overline{y_i} - \mu_i}{\sqrt{MS_{\varepsilon}/r}}\right) - \min_{i < j} \left(\frac{\overline{y_i} - \mu_i}{\sqrt{MS_{\varepsilon}/r}}\right) > \frac{c}{\sqrt{MS_{\varepsilon}/r}}\right)$$

 MSε is mean square of errors in ANOVA, and is unbiased estimator of σ². It is independent with y
_i, so

$$\frac{\overline{y_i} - \mu_i}{\sqrt{MS_{\varepsilon}/r}} \sim \mathbf{t}(\mathbf{f}\varepsilon) \qquad t_{(r)} = \max_i \left(\frac{\overline{y_i} - \mu_i}{\sqrt{MS_{\varepsilon}/r}}\right) \qquad t_{(1)} = \min_i \left(\frac{\overline{y_i} - \mu_i}{\sqrt{MS_{\varepsilon}/r}}\right)$$

• They are the largest and smallest order statistics from a sample (*a* observations, obey t(f ϵ)). Denote $q(a, f_{\epsilon}) = t_{(a)} - t_{(1)}$

- Then $P(W) = P\left(q(a, f_{\varepsilon}) > \frac{c}{\sqrt{MS_{\varepsilon}/r}}\right) = \alpha$ $i.e. \frac{c}{\sqrt{MS_{\varepsilon}/r}} = q_{1-\alpha}(a, f_{\varepsilon}), c = q_{1-\alpha}(a, f_{\varepsilon})\sqrt{MS_{\varepsilon}/r}$
- So the rejection region of these multiple tests with significant level α is

$$\left|\overline{y}_{i} - \overline{y}_{j}\right| > q_{1-\alpha}(a, f_{\varepsilon})\sqrt{MS_{\varepsilon}/r}, i < j, i, j = 1, 2, \cdots, a$$

Scheffe method

- For different number of replications
- Under $H_0^{ij}: \mu_i = \mu_j$ $\overline{y}_i - \overline{y}_j \sim N(0, \left(\frac{1}{r_i} + \frac{1}{r_j}\right)\sigma^2)$
- Replace σ² by MS_ε, and MS_ε is independent with y
 _i, so

$$F_{ij} = \frac{\left(\overline{y}_i - \overline{y}_j\right)^2}{\left(\frac{1}{r_i} + \frac{1}{r_j}\right) MS_{\varepsilon}} \qquad \sim \mathbf{F}(\mathbf{1}, \mathbf{f}\varepsilon)$$

• If H_0^{ij} is true, F_{ij} should not be large.

Scheffe method

• When all the H_0^{ij} are true, the rejection region of multiple tests is

$$W = \bigcup_{i < j} \left\{ F_{ij} > c \right\} \quad P(W) = P\left(\bigcup_{i < j} \left\{ F_{ij} > c \right\}\right) = P\left(\max_{i < j} F_{ij} > c\right)$$

- Scheffe proved that $\frac{\max F_{ij}}{a-1}$ approximately obeys F(*a*-1, f_{\varepsilon}). Given significant level α , then $c = (a-1)F_{1-\alpha}(a-1, f_{\varepsilon})$
- The rejection region is

$$\left|\overline{y}_{i} - \overline{y}_{j}\right| > \sqrt{(a-1)F_{1-\alpha}(a-1,f_{\varepsilon})(\frac{1}{r_{i}} + \frac{1}{r_{j}})MS_{\varepsilon}}, i < j, i, j = 1, 2, \cdots, a$$

Test of normality

Test of normality

- Many test procedures that we have developed rely on the assumption of Normality.
- There are several methods of assessing whether data are normally distributed or not (H₀: the data obeys Normal distribution; H₁: not obey Normal distribution).

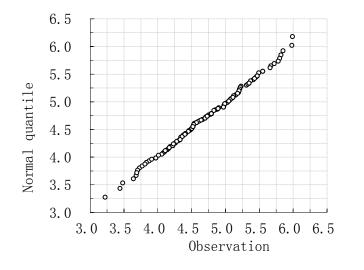
Test of normality

- They fall into two broad categories: graphical and statistical. The most common are:
- 1.Graphical
 - Q-Q probability plots
 - Cumulative frequency (P-P) plots
- 2. Statistical
 - Kolmogorov-Smirnov test
 - Shapiro-Wilk test

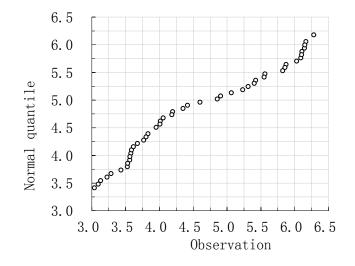
Q-Q probability plots

 Q-Q plots display the observed values against normally distributed data (represented by the line).

Normal Q-Q plot: Normally distribution data



Normal Q-Q plot: Non-normally distribution data



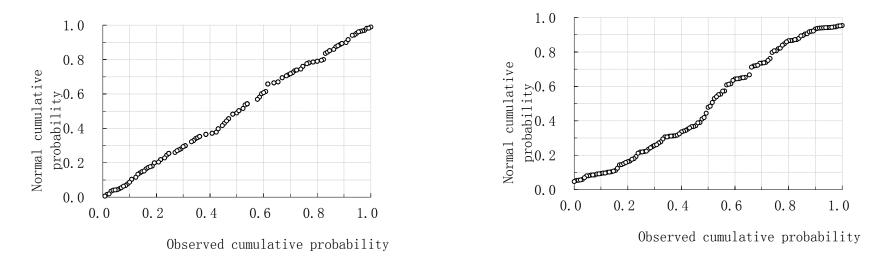
• Normally distributed data fall along the line.

P-P plots

 P-P (cumulative) plot displays the cumulative probabilities against normally distributed data (represented by the line).

Normal P-P plot: Normally distribution data

Normal P-P plot: Non-normally distribution data



• Normally distributed data fall along the line.

Statistical tests

- Statistical tests for normality are more precise since actual
- probabilities are calculated.
- The Kolmogorov-Smirnov and Shapiro-Wilks tests for normality calculate the probability that the sample was drawn from a normal population.
- The hypotheses used are:
- H₀: The sample data are not significantly different than a normal population.
- H_a: The sample data are significantly different than a normal population.

Statistical tests

- Typically, we are interested in finding a difference between groups. When we are, we 'look' for small probabilities.
- If the probability of finding an event is rare (less than 5%) and we actually find it, that is of interest. When testing normality, we are not looking for a difference.
- In effect, we want our data set to be no different than normal. So when testing for normality:
- Probabilities > 0.05 mean the data are normal.
- Probabilities < 0.05 mean the data are NOT normal.

- Based on comparing the observed frequencies and the expected frequencies
- Let $F(x) = P(X_i \le x)$ be the cdf for the distribution.
- In the uniform(0,1) case: $F(\mathbf{x}) = x, 0 \le x \le 1$
- Compare this to the "empirical distribution function":

$$\hat{F}_n(\mathbf{x}) = \frac{1}{n}$$
 (number of X_i in the sample $\leq x$)

• If X₁, X₂, ..., X_n really come from the distribution with cdf F, the distance

$$D = D_n = \max_{x} \left| \hat{F}_n(x) - F(x) \right|$$

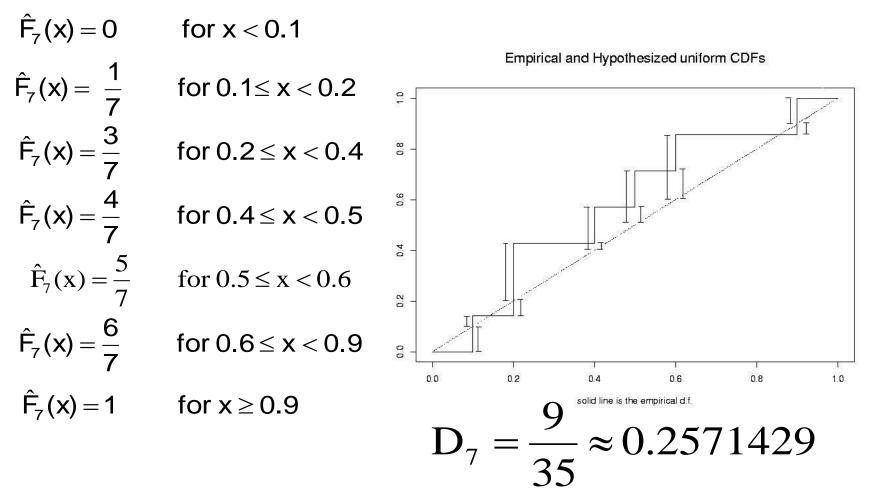
be small.

- Example: Suppose we have 7 observations:
- 0.6 0.2 0.5 0.9 0.1 0.4 0.2
- Put them in order:

should

• 0.1 0.2 0.2 0.4 0.5 0.6 0.9

• Now the empirical cdf is:



- Let $X_{(1)}$, $X_{(2)}$, ..., $X_{(n)}$ be the ordered sample.
- Then D_n can be estimated by

$$D_n = max \left\{ D_n^+, D_n^- \right\}$$

• Where

$$\begin{split} D_n^+ &= \max_{1 \leq i \leq n} \left\{ \begin{array}{l} \frac{i}{n} - F(X_{(i)}) \\ \end{array} \right\} \\ D_n^- &= \max_{1 \leq i \leq n} \left\{ \begin{array}{l} F(X_{(i)}) - \frac{i-1}{n} \\ \end{array} \right\} \end{split}$$

• (assuming non-repeating values)

- We reject that this sample came from the proposed distribution if the empirical cdf is too far from the true cdf of the proposed distribution
- i.e.: We reject if D_n is too "large".

- In the 1930's, Kolmogorov and Smirnov showed that $\lim_{n\to\infty} P(n^{1/2} D_n \le t) = 1 - 2 \sum_{i=1}^{\infty} (-1)^{i-1} e^{-2i^2 t^2}$
- So, for large sample sizes, you could assume $P(n^{1/2}D_n \le t) \approx 1 - 2\sum_{i=1}^{\infty} (-1)^{i-1} e^{-2i^2t^2}$
- and find the value of t that makes the right hand side 1-α for an α level test.

- For small samples, people have worked out and tabulated critical values, but there is no nice closed form solution.
 - J. Pomeranz (1973)
 - J. Durbin (1968)
- Good approximations for n>40:

α	0.20	0.10	0.05	0.02	0.01
CV	$\frac{1.0730}{\sqrt{n}}$	$\frac{1.2239}{\sqrt{n}}$	$\frac{1.3581}{\sqrt{n}}$	$\frac{1.5174}{\sqrt{n}}$	$\frac{1.6276}{\sqrt{n}}$

• From a table, the critical value for a 0.05 level test for n=7 is 0.483.

$$D_7 = \frac{9}{35} \approx 0.2571429 < 0.483$$

 So we cannot reject H₀, i.e. the data obeys Normal distribution.

Shapiro-Wilk test

- The test statistic is: $W = \frac{(\sum_{i=1}^{[n/2]} a_i (x_{(n+1-i)} x_{(i)}))^2}{\sum_{i=1}^n (x_i \overline{x})^2}$
- Where $x_{(i)}$ is the ith order statistic
- The constants a_i are given by

 $(a_1, \dots, a_n) = \frac{m^T V^{-1}}{(m^T V^{-1} V^{-1} m^T)^{1/2}}, where m = (m_1, \dots, m_n)^T$

 m₁, ..., m_n are the expected values of the order statistics of independent and identically distributed random variables sampled from the standard normal distribution, and V is the covariance matrix of those order statistics.

Shapiro-Wilk test

- The user may reject the null hypothesis if is too small
- W should be closed to 1 under H_0 . The rejection region is $\{W \le c\}$
- Where $P(W \le c) = \alpha$

Example

• The data from FDP activities of mice.

0bs	1	2	3	4	5	6	7	8
x	3.83	3.16	4.70	3.97	2.03	2.87	3.65	5.09

 Put the data in order and divide them into two.

Obs in order	1	2	3	4	5	6	7	
x	2.03	2.87	3.16	3.65	3.83	3.97	4.70	

Example

	Order	a _i	x _(n+1-i)	x _(i)	d _i =x _(n+1-i) - x _(i)	a _i d _i				
	1	0.6052	5.09	2.03	3.06	1.851912				
	2	0.3164	4.70	2.87	1.83	0.579012				
	3	0.1743	3.97	3.16	0.81	0.141183				
	4	0.0561	3.83	3.65	0.18	0.010098				
	Total					2.582205				
•	• So $W = \frac{\left(\sum_{i=1}^{\lfloor n/2 \rfloor} a_i \left(x_{(n+1-i)} - x_{(i)}\right)\right)^2}{\sum_{i=1}^n (x_i - \overline{x})^2} = \frac{(2.582205)^2}{6.782549963} = 0.98307903$									

 From the reference table of W, W_(8.0.05)=0.818<W, so we cannot reject H₀.

Choosing the methods

- Which normality test should I use?
- Kolmogorov-Smirnov:
 More suitable for large samples.
- Shapiro-Wilk:
 - Works best for small data sets

Test of homogeneity

Test of homogeneity

 If we have various groups or levels of a variable, we want to make sure that the variance within these groups or levels is the same. It is the basic assumption for ANOVA.

•
$$H_0: \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_a^2$$

• H₁: not H₀

Test of homogeneity

- Some common methods:
- 1. Hartley test: only used for the same sample size for each level.
- 2. Bartlett test: sample size may be different, but each size>=5
- 3. Adjusted Bartlett test: sample size may be different, and no restriction on size

Hartley test

- The numbers of replications are the same for each level, i.e. $r_1 = r_2 = \cdots = r_a = r$
- Hartley proposed the statistic:

$$H = \frac{\max\{S_1^2, S_2^2, \dots, S_a^2\}}{\min\{S_1^2, S_2^2, \dots, S_a^2\}}$$

 The values of H under H₀ can be simulated, and denote the distribution as H(a, f), f=r-1

Hartley test

- Under H₀, the value of H should be close to 1.
- Given significance level α, the rejection region should be

 $W_1 = \{H > H_{1-\alpha}(a, f)\}$

• Where $H_{1-\alpha}(a, f)$ is the 1- α quantile of H distribution.

• The ith sample variance is

$$S_i^2 = \frac{1}{r_i - 1} \sum_{j=1}^{r_i} (y_{ij} - \bar{y}_i)^2 = \frac{Q_i}{f_i}, i = 1, 2, \dots, a$$

• Where $Q_i = \sum_{j=1}^{r_i} (y_{ij} - \overline{y}_i)^2, f_i = r_i - 1 \text{ (degree of freedom)}$

• We know that
$$MS_{\varepsilon} = \frac{1}{f_{\varepsilon}} \sum_{i=1}^{a} Q_i = \sum_{i=1}^{a} \frac{f_i}{f_{\varepsilon}} S_i^2$$

• It is the (average) arithmetic mean of

$$S_1^2, S_2^2, \cdots, S_a^2$$

• Denote geometric mean

$$GMS_{\varepsilon} = \left[\left(S_1^2\right)^{f_1} \left(S_2^2\right)^{f_2} \cdots \left(S_a^2\right)^{f_a} \right]^{\frac{1}{f_{\varepsilon}}}$$

• Where $f_{\varepsilon} = \sum_{i=1}^{n} f_i = \sum_{i=1}^{n} (r_i - 1) = n - a$

• It is true that
$$GMS_{\varepsilon} \leq MS_{\varepsilon}^{i=1}$$

 $GMS_{\varepsilon} = MS_{\varepsilon} \Leftrightarrow S_1^2 = S_2^2 = \dots = S_a^2$

• So under H₀, $\frac{MS_{\varepsilon}}{GMS_{\varepsilon}}$ should be close to 1. If it is too large, reject H₀. Rejection region is

$$W_1 = \{\ln \frac{MS_{\varepsilon}}{GMS_{\varepsilon}} > d\}$$

• Bartlett proved that: for large sample, one function of $\ln \frac{MS_{\varepsilon}}{GMS_{\varepsilon}}$ approximately obeys $\chi^{2}(a-1)$

• i.e.
$$B = \frac{f_{\varepsilon}}{C} (\ln MS_{\varepsilon} - \ln GMS_{\varepsilon}) \sim \chi^2(a-1)$$

• Where
$$C = 1 + \frac{1}{3(a-1)} \left(\sum_{i=1}^{a} \frac{1}{f_i} - \frac{1}{f_{\varepsilon}} \right)$$

is always larger than 1.

• Taking the statistic

$$B = \frac{1}{C} (f_{\varepsilon} \ln MS_{\varepsilon} - \sum_{i=1}^{a} f_{i} \ln S_{i}^{2}) \stackrel{\bullet}{\sim} \chi^{2}(a-1)$$

The rejection region is

 $W_1 = \{B > \chi^2_{1-\alpha}(a-1)\}$

• Here B approximately obeys χ^2 . So the method is more suitable for data with more than 5 replications in each level.

Adjusted Bartlett test

Box proposed the adjusted Bartlett statistic

$$B' = \frac{f_2 BC}{f_1 (A - BC)}$$

• B and C are given above. And

$$f_1 = a - 1, f_2 = \frac{a + 1}{(C - 1)^2}, A = \frac{f_1}{2 - C + 2/f_2}$$

• Under H_0 , B' approximately obeys $F(f_1, f_2)$

Adjusted Bartlett test

• The rejection region is

$$W_1 = \{B' > F_{1-\alpha}(f_1, f_2)\}$$

 Sometimes, f₂ is not an integer. We can use Interpolation method of the quantiles for F distribution.

• Testing folic acid content for teas from 4 locations.

Level	Data							Rep	Sum	Mean	SS within groups
A ₁	7.9	6.2	6.6	8.6	8.9	10.1	9.6	$r_1 = 7$	$T_1 = 57.9$	8.27	$Q_1 = 12.83$
A_2	5.7	7.5	9.8	6.1	8.4			$r_2 = 5$	$T_2 = 37.5$	7.50	$Q_2 = 11.30$
A_3	6.4	7.1	7.9	4.5	5.0	4.0		$r_3 = 6$	$T_3 = 34.9$	5.82	$Q_3 = 12.03$
A_4	6.8	7.5	5.0	5.3	6.1	7.4		$r_4 = 6$	$T_4 = 38.1$	6.35	$Q_4 = 5.61$
								r = 24	<i>T</i> =168.4		$S_{\varepsilon} = 41.77$

• For Bartlett test,

 $S_1^2 = 2.14, S_2^2 = 2.83, S_3^2 = 2.41, S_4^2 = 1.12$

• And MS_{ϵ} =2.09. Then

$$C = 1 + \frac{1}{3(a-1)} \left(\sum_{i=1}^{a} \frac{1}{f_i} - \frac{1}{f_{\varepsilon}} \right)$$
$$= 1 + \frac{1}{3 \times (4-1)} \left(\frac{1}{6} + \frac{1}{4} + \frac{1}{5} + \frac{1}{5} - \frac{1}{20} \right) = 1.0856$$

$$B = \frac{1}{C} \left(f_{\varepsilon} \ln MS_{\varepsilon} - \sum_{i=1}^{a} f_{i} \ln S_{i}^{2} \right)$$

= $\frac{1}{1.0856} \cdot \left(20 \times \ln 2.09 - \left(6 \times \ln 2.14 + 4 \times \ln 2.83 + 5 \times \ln 2.41 + 5 \times \ln 1.12 \right) \right) = 0.970$

• Given α=0.05,

$$\chi_{1-\alpha}^2(a-1) = \chi_{0.95}^2(4-1) = 7.815 > B$$

 So we cannot reject H₀, i.e. we agree with that

$$\sigma_1^2 = \sigma_2^2 = \cdots = \sigma_a^2$$

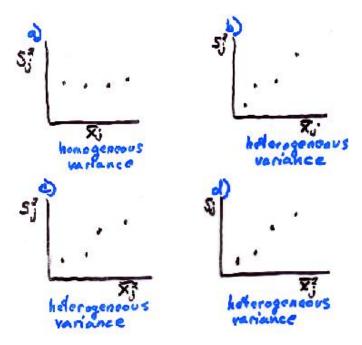
• For Adjusted Bartlett test, $f_1 = 4 - 1 = 3$ $f_2 = \frac{4 + 1}{(1.0856C - 1)^2} = 682.4$

$$A = \frac{682.4}{2 - 1.0856 + 2/682.4} = 743.9 \quad B' = \frac{682.4 \times 0.970 \times 1.0856}{3 \times (743.9 - 0.970 \times 1.0856)} = 0.322$$

- Given $\alpha = 0.05$, $F_{0.95}(3, 682.4) = F_{0.95}(3, +\infty) = 2.60 > B'$
- We cannot reject H₀

Data transformation

- Data transformation is used to make your data obey Normal distribution.
- Three normal transformation methods:



a) No need for transformationb) Use square root transformationc) Use logarithmic transformationd) Use reciprocal transformation

Let's work on the previous example together

Mutants	Rep I	Rep II	Rep III	•
А	10.9	9.1	12.2	
В	10.8	12.3	14.0	•
С	11.1	12.5	10.5	
D	9.1	10.7	10.1	•
E	11.8	13.9	16.8	•
F	10.1	10.6	11.8	
G	10.0	11.5	14.1	
Н	9.3	10.4	14.4	

- Do the randomization of the three blocks
- Build the ANOVA table for the observed data
- Multiple test by LSD
- Normality test by Q-Q and P-P plot

- What else do we want?
- Orthogonal contrasts