Lecture 4

Hypothesis testing and statistical inferences

The Law of Large Numbers and Central Limit Theorem

The Law of Large Numbers

- Assume $X_{1}, X_{2}, \ldots, X_{n}$ are random samples of $X . E(X)=\mu$ and $V(X)$ exist. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$, then for any given $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\{|\bar{X}-\mu|<\varepsilon\}=1
$$

The Central Limit Theorem

Let \bar{X} be the mean of a random sample $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{n}$, of size n from a distribution with a finite mean μ and a finite positive variance σ^{2}. Then

$$
Y=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \rightarrow N(0,1)
$$

Small probability event

- A small probability event is an event that has a low probability of occurring.
- The small probability event will hardly happen in one experiment. This principle is used for hypothesis and tests.
- An event is a small probability event, so it will hardly happen in theory. But if it happens actually, then we reject H_{0}.

Hypothesis and testing

Hypothesis testing: preliminaries

- A hypothesis is a statement that something is true.
- Null hypothesis: A hypothesis to be tested. We use the symbol H_{0} to represent the null hypothesis
- Alternative hypothesis: A hypothesis to be considered as an alternative to the null hypothesis. We use the symbol H_{a} to represent the alternative hypothesis.
- The alternative hypothesis is the one believe to be true, or what you are trying to prove is true.

Hypothesis testing: Preliminaries

- In this course, we will always assume that the null hypothesis for a population parameter, Θ, always specifies a single value for that parameter. So, an equal sign always appears:

$$
H_{0}: \Theta=\Theta_{0}
$$

- If the primary concern is deciding whether a population parameter is different with a specified value, the alternative hypothesis should be:

$$
H_{a}: \Theta \neq \Theta_{0}
$$

- This form of alternative hypothesis is called a twotailed test.

Hypothesis testing: Preliminaries

- If the primary concern is whether a population parameter, Θ_{0}, is less than a specified value Θ, the alternative hypothesis should be:

$$
H_{a}: \Theta<\Theta_{0}
$$

- A hypothesis test whose alternative hypothesis has this form is called a left-tailed test.
- If the primary concern is whether a population parameter, Θ_{0}, is greater than a specified value Θ, the alternative hypothesis should be:

$$
H_{a}: \Theta>\Theta_{0}
$$

- A hypothesis test whose alternative hypothesis has this form is called a right-tailed test.
- A hypothesis test is called a one-tailed test if it is either right- or left-tailed, i.e., if it is not a two-tailed test.

Hypothesis testing: Preliminaries

- After we have the null hypothesis, we have to determine whether to reject it or fail to reject it.
- The decision to reject or fail to reject is based on information contained in a sample drawn from the population of interest. The sample values are used to compute a single number, corresponding to a point on a line, which operates as a decision maker. This decision maker is called a test statistic
- If test statistic falls in some interval which support alternative hypothesis, we reject the null hypothesis. This interval is called rejection region
- It test statistic falls in some interval which support null hypothesis, we fail to reject the null hypothesis. This interval is called acceptance region
- The value of the point, which divide the rejection region and acceptance one is called critical value

Hypothesis testing: Preliminaries

- We can make mistakes in the test.
- Type I error: reject the null hypothesis when it is true.
- Probability of type I error is denoted by α
- Type II error: accept the null hypothesis when it is wrong.
- Probability of type II error is denoted by β

Hypothesis testing: Preliminaries

Test of hypothesis for a population mean

- We are basically asking: What observed value of random variable X would be different enough from my null hypothesis value to convince me that my null is wrong
- We always talk in terms of type I errors, alpha, which are always small, for example, 0.1, 0.05, 0.01
- The smaller alpha gets the more tight your proof that the alternative is correct, because the probability of type I error is reduced, but the chances of type II error are increased
- Now we will introduce some test on populations which obey normal distribution

Test of hypothesis for a population mean

(two tailed and large sample, i.e. variance $\sigma^{2}=\sigma_{0}^{2}$ is known)

1) Hypothesis: $\boldsymbol{H}_{0}: \mu=\mu_{0}$

$$
H_{a}: \mu \neq \mu_{0}
$$

2) Test statistic: large sample case

$$
z_{o b s}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}} \sim N(0,1)
$$

3) Critical value, rejection and acceptance region:

- The bigger the absolute value of z is, the more possible to reject null hypothesis.
- The critical value depend on the significance level α
- rejection region: $\left|z_{o b s}\right|>z_{\alpha / 2 \text { orcrit }}$

Example

- A sample of 60 students' grades is taken from a large class, the average grade in the sample is 80 with a sample standard deviation 10. Test the hypothesis that the average grade is 75 with 5% significance level (probability of making a type I error).
- Hypothesis: $H_{0}: \mu=75$

$$
H_{a}: \mu \neq 75
$$

- Test statistic:

$$
\begin{gathered}
z_{o b s}=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}=\frac{80-75}{10 / \sqrt{60}}=3.87^{\sim} N(0,1) \\
\left|z_{o b s}\right|>z_{0.05 / 2}=1.96, \text { so we reject } H_{0}
\end{gathered}
$$

Test of hypothesis for a population mean

(two tailed and small sample, i.e. variance σ^{2} is unknown)

1) Hypothesis: $\quad H_{o}: \mu=\mu_{0}$

$$
H_{a}: \mu \neq \mu_{0}
$$

2) Test statistic: small sample case

$$
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}} \sim t(n-1)
$$

3) Critical value, rejection and acceptance region:

- The bigger the absolute value of t is, the more possible to reject null hypothesis.
- The critical value depends on significance level α
- rejection region: $|t|>t_{\alpha / 2}$

An example

- Suppose you have a sample of 11 Econ midterm exam grades. The mean of that sample is 81 with a standard deviation of 9 . Test hypothesis that average grade of the population is 75 under the 5% significance level.
- Hypothesis: $H_{0}: \mu=75$

$$
H_{a}: \mu \neq 75
$$

- Test statistic:

$$
\begin{gathered}
t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}=\frac{81-75}{9 / \sqrt{11}}=2.21 \sim t(10) \\
\left|t_{\text {obs }}\right|<t_{0.05 / 2}(10)=2.23, \text { so we cannot reject } H_{0}
\end{gathered}
$$

Test of hypothesis for a population variance

 (mean $\mu=\mu_{0}$ is known)1) Hypothesis: $H_{0}: \sigma^{2}=\sigma_{o}^{2}$

$$
H_{a}: \sigma^{2} \neq \sigma_{0}^{2}
$$

2) Test statistic:

$$
\chi^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n)
$$

3) Critical value, rejection and acceptance region:
rejection region: $\chi^{2}>\chi_{\alpha / 2}^{2}(n)$ or $\chi^{2}<\chi_{1-\alpha / 2}^{2}(n)$

An example

- Suppose that $\mathrm{X} \sim \mathrm{N}\left(1.45, \sigma^{2}\right) . \mathrm{X} 1, \ldots, \mathrm{X} 5$ are random samples of X with values $1.32,1.55,1.36,1.40$ and 1.44. Test hypothesis that $H_{0}: \sigma^{2}=0.048^{2}$ under the 5% significance level.
- Hypothesis: $H_{0}: \sigma^{2}=0.048^{2}$

$$
H_{a}: \sigma \neq 0.048^{2}
$$

- Test statistic:

$$
\chi^{2}=\frac{\sum_{i=1}^{5}\left(x_{i}-1.45\right)^{2}}{0.048^{2}}=16.32 \sim \chi^{2}(5)
$$

$$
\chi_{o b s}^{2}>\chi_{0.05 / 2}^{2}(5)=12.83, \text { so we reject } H_{0}
$$

Test of hypothesis for a population variance

(mean μ is unknown)

1) Hypothesis: $H_{0}: \sigma^{2}=\sigma_{0}^{2}$

$$
H_{a}: \sigma^{2} \neq \sigma_{0}^{2}
$$

2) Test statistic:

$$
\chi^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1)
$$

3) Critical value, rejection and acceptance region:
rejection region: $\quad \chi^{2}>\chi_{\alpha / 2}^{2}(n-1)$ or $\quad \chi^{2}<\chi_{1-\alpha / 2}^{2}(n-1)$

An example

- Suppose that variance of heading date for wheat is 2.781 which is caused by environmental effects. Now sample variance of $58 \mathrm{~F}_{2}$ plants is $s^{2}=6.458$. Test if the variance is caused by environment under the 5% significance level.
- Hypothesis: $H_{0}: \sigma^{2}=2.781$

$$
H_{a}: \sigma \neq 2.781
$$

- Test statistic:

$$
\begin{aligned}
& \chi^{2}=\frac{\sum_{i=1}^{5}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}}{2.781}=\frac{57 s^{2}}{2.781}=132.26 \sim \chi^{2}(57) \\
& \chi^{2}{ }_{\text {obs }}>\chi_{0.05 / 2}^{2}(57)=79.75, \text { so we reject } H_{0}
\end{aligned}
$$

Test of hypothesis for binomial proportion

1) Hypothesis: $H_{\mathrm{o}}: p=p_{\mathrm{o}}$

Two-tailed:

$$
H_{a}: p \neq p_{\mathrm{o}}
$$

2) Test statistic: large sample case

$$
\hat{p}=\frac{x}{n} \quad z_{\text {obs }}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}} \text { approximately } \sim N(0,1)
$$

3) Critical value, rejection and acceptance region: rejection region (two-tailed): $\left|z_{\text {obs }}\right|>z_{\alpha / 2}$

An example

- Suppose the rate of a sickness in one area is 2.7%. Now we surveyed 278 persons in this area and found 10 of them had this sickness. Test if the sickness rate normal or not?
- Hypothesis: $H_{0}: p=2.7 \%$

$$
H_{a}: p \neq 2.7 \%
$$

- Test statistic:

$$
\begin{aligned}
& z_{\text {obs }}=\frac{\hat{p}-p_{0}}{\sqrt{\frac{p_{0} q_{0}}{n}}}=\frac{10 / 278-0.027}{\sqrt{0.027 \bullet(1-0.027) / 278}}=0.923 \sim N(0,1) \\
& \left|z_{\text {obs }}\right|<z_{0.05 / 2}=1.96, \text { so we cannot reject } H_{0}
\end{aligned}
$$

Test of difference between two population means

- Population 1 and population 2 are two populations
- $\mu_{1}=$ mean of data in population 1
- $\mu_{2}=$ mean of data in population 2
- Two sets of samples: one from population 1 , the other from population 2

$$
\begin{aligned}
& H_{\mathrm{o}}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Test of difference between two population means for pairwise data

- Assume the population size of the two populations are both n. The sampling distribution of difference between population mean $\bar{x}_{1}-\bar{x}_{2}$ is a normal distribution with mean

$$
\mu_{\left(\overline{x_{1}}-\overline{x_{2}}\right)}=x_{1}-x_{2}
$$

and the standard deviation is

$$
s_{\left(\overline{x_{1}}-\overline{x_{2}}\right)}=\sqrt{\frac{\sum_{i=1}^{n}\left[\left(x_{1 i}-x_{2 i}\right)-\left(\bar{x}_{1}-\bar{x}_{2}\right)\right]^{2}}{n(n-1)}}
$$

Test for difference of two population means (pairwise data)

1) Hypothesis: D_{0} is some specified difference that you wish to test. For many tests, you will wish to hypothesize that there is no difference between two means, that is $\mathrm{D}_{0}=0$

$$
H_{0}: \mu_{1}=\mu_{2} \quad H_{a}: \mu_{1} \neq \mu_{2}
$$

2) Test statistic: large sample case

$$
t_{\text {obs }}=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-D_{0}}{s_{\left(\bar{x}_{1}-\overline{z_{2}}\right)}}=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-D_{0}}{\sqrt{\frac{\sum_{i=1}^{n}\left[\left(x_{1 i}-x_{2 i}\right)-\left(\bar{x}_{1}-\bar{x}_{2}\right)\right]^{2}}{n(n-1)}}} \sim t(n-1)
$$

3) Critical value, rejection and acceptance region:
rejection region:

$$
\left|t_{o b s}\right|>t_{\alpha / 2}
$$

An Example

- Ten silicosis patients were treated by a new medicine. Their HGB before and after treatment were

Patient $\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5	6	7	8	9	10	
Before $(\mathrm{x} 1)$	11.3	15.0	15.0	13.5	12.8	10.0	11.0	12.0	13.0	12.3
After (x2)	14.0	13.8	14.0	13.5	13.5	12.0	14.7	11.4	13.8	12.0
D=x1-x2	-2.7	1.2	1.0	0.0	-0.7	-2.0	-3.7	0.6	-0.8	0.3

- Test if the treatment may cause the change in HGB.

An Example

- Hypothesis: $H_{0}: \mu_{1}=\mu_{2}$

$$
H_{a}: \mu_{1} \neq \mu_{2}
$$

- Test statistic:

$$
\begin{gathered}
t_{o b s}=\frac{\overline{x_{1}}-\overline{x_{2}}}{s_{\left(\overline{x_{1}}-\overline{x_{2}}\right)}}=\frac{-0.68}{\sqrt{\frac{\sum_{i=1}^{n}\left[\left(x_{1 i}-x_{2 i}\right)+0.68\right]^{2}}{10 \bullet 9}}}=-1.3067 \sim t(9) \\
\left|t_{\text {obs }}\right|<t_{0.05 / 2}(9)=2.262, \text { so we cannot reject } H_{0}
\end{gathered}
$$

Test of difference between two population means (large sample)

- In large sample case (i.e. σ_{1}^{2} and σ_{2}^{2} is known), the sampling distribution of $\overline{x_{1}}-\overline{x_{2}}$ difference between population mean is a normal distribution with mean

$$
\mu_{\left(x_{1}-\overline{x_{2}}\right)}=\mu_{1}-\mu_{2}
$$

and the standard deviation is

$$
\sigma_{\left(\overline{x_{1}}-\overline{x_{2}}\right)}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}
$$

Test for difference of two population means

 (two tailed and large sample)1) Hypothesis: D_{0} is some specified difference that you wish to test. For many tests, you will wish to hypothesize that there is no difference between two means, that is $\mathrm{D}_{0}=0$

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=D_{0} \\
& H_{a}: \mu_{1}-\mu_{2} \neq D_{0}
\end{aligned}
$$

2) Test statistic: large sample case

$$
z_{\text {obs }}=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-D_{0}}{\sigma_{\left(\overline{x_{1}}-\overline{x_{2}}\right)}}=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)-D_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1)
$$

3) Critical value, rejection and acceptance region:
rejection region: $\left|z_{\text {obs }}\right|>z_{\alpha / 2}$

Example: compare salary difference

- Population 1: faculty in public schools
- Population 2: faculty in private schools
- $\mu_{1}=$ mean salary of faculty in public schools
- $\mu_{2}=$ mean salary of faculty in private schools
- Sample 1: salaries of faculty members in public schools ($\mathrm{n}=30$)
- Sample 2: salaries of faculty members in private schools ($\mathrm{n}=35$)

$$
\begin{array}{ll}
\overline{x_{1}}=57.48 & \overline{x_{2}}=66.39 \\
s_{1}=9 & s_{2}=9.5
\end{array}
$$

- Test the hypothesis that the salaries are less for faculty in public school with 5% significance level

Example: compare salary difference

- They are large size populations.

$$
\begin{aligned}
& z_{o b s}=\frac{\left(\overline{x_{1}}-\overline{x_{2}}\right)}{\mathrm{s}_{\left(\overline{x_{1}}-\overline{x_{2}}\right)}}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{\mathrm{~s}_{1}^{2}}{n_{1}}+\frac{\mathrm{s}_{2}^{2}}{n_{2}}}}=-2.18 \\
& \left|z_{o b s}\right|>z_{0.05 / 2}=1.96, \text { so we reject } H_{0}
\end{aligned}
$$

Test of difference between two population variances

1) Hypothesis: $\quad H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$

$$
H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

2) Test statistic: small sample case

$$
F_{o b s}=\frac{s_{1}^{2}}{s_{2}^{2}} \sim F\left(n_{1}-1, n_{2}-1\right), \text { assume } s_{1}^{2}>s_{2}^{2}
$$

3) Critical value, rejection and acceptance region: rejection region: $\quad F_{o b s}>F_{1-\alpha / 2}$

An Example

- Two groups of mice with different feeds. The increased weights after eight weeks are (g):
- Gourp1: n1=12. Weights: 83, 146, 119, 104, 120, 161, 107, 134, 115, 129, 99, 123.
- Group 2: n2=7. Weights: 70, 118, 101, 85, 107, 132, 94.
- Test if the variances of the two groups are different.

An Example

- Hypothesis: $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$

$$
H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2}
$$

- Test statistic:

$$
\begin{aligned}
& s_{1}^{2}=445.82 ; s_{2}^{2}=425.33 \\
& F_{\text {obs }}=\frac{s_{1}^{2}}{s_{2}^{2}}=1.048 \sim F(11,6)
\end{aligned}
$$

$F_{\text {obs }}<F_{0.975}(11,6)=5.43$, so we cannot reject H_{0}

Test of difference between two population means

- In small sample case, σ_{1}^{2} and σ_{2}^{2} is unknown, but $\sigma_{1}^{2}=\sigma_{2}^{2}$, the sampling distribution of the difference between two means is the t distribution with mean

$$
\mu_{\left(\overline{x_{1}}-\overline{x_{2}}\right)}=\mu_{1}-\mu_{2}
$$

- and standard deviation

$$
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)
$$

- with $\boldsymbol{n}_{1}+\boldsymbol{n}_{2}-2$ degrees of freedom

Test for difference of two population means

(two tailed and small sample with the same variance)

1) Hypothesis:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

2) Test statistic: small sample case

$$
t_{o b s}=\frac{\overline{x_{1}}-\overline{x_{2}}}{s} \sim t\left(n_{1}+n_{2}-2\right)
$$

3) Critical value, rejection and acceptance region: rejection region

$$
\left|t_{o b s}\right|>t_{\alpha / 2}
$$

Example: compare salary difference

- Population 1: faculty in public schools
- Population 2: faculty in private schools
- $\quad \mu_{1}=$ mean salary of faculty in public schools
- $\mu_{2}=$ mean salary of faculty in private schools
- Sample 1: salaries of faculty members in public schools ($\mathrm{n}=10$)
- Sample 2: salaries of faculty members in private schools

$$
\begin{array}{lll}
(\mathrm{n}=15) & \overline{x_{1}}=57.48 & \overline{x_{2}}=66.39 \\
& s_{1}=9 & s_{2}=9.5
\end{array}
$$

- Test the hypothesis that the salaries are the same for faculty in public and private school with 5\% significance level

Example: compare salary difference

- We have smaller sample sizes.

$$
\begin{aligned}
s^{2} & =\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)=14.44 \\
t_{o b s} & =\frac{\overline{x_{1}}-\overline{x_{2}}}{s}=-1.32
\end{aligned}
$$

$\left|t_{\text {obs }}\right|<t_{0.05 / 2}(23)=2.07$, we accept H_{0} or cannot reject H_{0}

Test for difference of two population means

(two tails and small sample with different variances)

1) Hypothesis:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

2) Test statistic: small sample case

$$
t_{\text {obs }}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}} \text { approximately } \sim t(v)
$$

Where

$$
v=I N T E G E R\left[\left(\frac{\mathrm{~s}_{1}^{2}}{n_{1}}+\frac{\mathrm{s}_{2}^{2}}{n_{2}}\right) /\left(\left(\frac{\mathrm{s}_{1}^{2}}{n_{1}}\right)^{2} /\left(n_{1}-1\right)+\left(\frac{\mathrm{s}_{2}^{2}}{n_{2}}\right)^{2} /\left(n_{2}-1\right)\right](\text { rounded })\right.
$$

3) Critical value, rejection and acceptance region: rejection region
```
|obs}|>\mp@subsup{t}{\alpha/2}{
```


Simplification

- Simplify the formula for degree of freedom in some special conditions: assume $n_{1}=n_{2}=n$, then

$$
v=N I N T\left[(n-1) \frac{\left(s_{1}^{2}+s_{2}^{2}\right)^{2}}{s_{1}^{4}+s_{2}^{4}}\right]
$$

- Assume $s_{1}=s_{2}, n_{1}=n_{2}=n$, then $v=2(n-1)$
- In this case, $v=2(n-1)=n_{1}+n_{2}-2$

Degree of freedom

- Assume $s_{1}^{2}=k s_{2}^{2} \quad(k>=1), n_{1}=n_{2}=n$, then

$$
v=\operatorname{NINT}\left[(n-1) \frac{(k+1)^{2}}{k^{2}+1}\right] \stackrel{k \rightarrow \infty}{\rightarrow} n-1
$$

An example

- Suppose the blood pressures of 20 older people $\bar{x}_{1}=137 \mathrm{mmHg}, s_{1}^{2}=938 ; 20$ younger people $\bar{x}_{2}=128 \mathrm{mmHg}, s_{1}^{2}=193$. Test if the blood pressures of the two groups are different.
- First, test $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$

$$
\begin{aligned}
& F_{\text {obs }}=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{938}{193}=4.8601 \sim F(19,19) \\
& F_{\text {obs }}>F_{0.975}(19,19)=2.51, \text { so we reject } H_{0} \\
& \text { So } \sigma_{1}^{2} \neq \sigma_{2}^{2}
\end{aligned}
$$

An example

- Then test $H_{0}: \mu_{1}=\mu_{2}$

$$
v=\operatorname{INTEGER}\left[\left(\frac{\mathrm{s}_{1}^{2}}{n_{1}}+\frac{\mathrm{s}_{2}^{2}}{n_{2}}\right) /\left(\left(\frac{\mathrm{s}_{1}^{2}}{n_{1}}\right)^{2} /\left(n_{1}-1\right)+\left(\frac{\mathrm{s}_{2}^{2}}{n_{2}}\right)^{2} /\left(n_{2}-1\right)\right)\right](\text { rounded }) \approx 27
$$

- Test statistic:
$t_{\text {obs }}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}}=\frac{137-128}{\sqrt{\frac{938}{20}+\frac{193}{20}}}=1.1968$ approximately $\sim t(27)$
$\left|t_{\text {obs }}\right|<t_{0.05 / 2}(27)=2.052$, we cannot reject H_{0}

Test of hypothesis for difference in binomial proportions

1) Hypothesis: $H_{0}: p_{1}=p_{2}$

$$
H_{a}: p_{1} \neq \text { or }>\text { or }<p_{2} \text { one/two tail tests }
$$

2) Test statistic:

$$
z_{\text {obs }}=\frac{\hat{p}_{1}-\hat{p}_{2}}{s_{\hat{p}_{1}-\hat{p}_{2}}} \text { ap proximately } \sim N(0,1)
$$

Where

$$
s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right) \hat{p} \hat{q}} \quad \hat{p}=\frac{n_{1}}{n_{1}+n_{2}} \hat{p}_{1}+\frac{n_{2}}{n_{1}+n_{2}} \hat{p}_{2}, \hat{q}=1-\hat{p}
$$

3) Critical value, rejection and acceptance region: rejection region $\left|z_{\text {obs }}\right|>z_{\alpha / 2}$ or $z_{\text {obs }}>z_{\alpha}$ or $z_{\text {obs }}<-z_{\alpha}$

An example

- Two pesticides: one killed 460 of 700 pets; the other killed 364 of 500 . Test if the two pesticides had similar effects.
- Hypothesis: $H_{0}: p_{1}=p_{2}$
- Test statistic:

$$
\begin{gathered}
z_{o b s}=\frac{\hat{p}_{1}-\hat{p}_{2}}{s_{\hat{p}_{1}-\hat{p}_{2}}}=\frac{0.657-0.728}{0.02716}=-2.6141 \text { approximately } \sim N(0,1) \\
\\
\left|z_{o b s}\right|>z_{0.05 / 2}=1.96, \text { so we reject } H_{0}
\end{gathered}
$$

P-values

- The smallest value of alpha for which test results are statistically significant, or in other words, statistically different than the null hypothesis value.
- Smallest value at which you still reject the null.
- Example 1: You see a p-value of 0.025
- You would fail to reject at a 1% level of significance, but reject at 5\%
- Example 2: 60 students are polled average of 72 observed with a standard deviation of 10, what is the p-value of the test whether the population average is 75 ?

Power of a statistical test

- P (reject the null hypothesis when it is false) $=1-\beta$
- (1- α) is the probability we accept the null when it was in fact true
- (1- β) is the probability we reject when the null is in fact false - this is the power of the test.
- The power changes depending on what the actual population parameter is.

Impact factors of power

- For example: $H_{0}: \mu=\mu_{0}, \quad H_{a}: \mu>\mu_{0}$
- Test statistic

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

- If we want to reject H_{0}, we need

$$
\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}} \geq Z_{\alpha}
$$

- So the power depends on $\delta=\bar{x}-\mu_{0}, \sigma$, n, and α

The larger the difference δ is, the higher the power is

- $\overline{\boldsymbol{X}} \sim N\left(\mu, \sigma^{2} / \mathrm{n}\right)$
- If H_{0} is true, $\bar{X} \sim N\left(\mu_{0}, \sigma^{2} / \mathrm{n}\right)$
- If H_{a} is true, $\bar{X} \sim N\left(\mu_{0}+\delta, \sigma^{2} / n\right)$

The smaller the standard error or the larger the population size is, the higher the power is

The larger α is, the higher the power is

How many replications?

Or what is a suitable sample size?

- The number of replications in a research study affects the precision of estimates for treatment means and the power of statistical tests to detect differences among the means of treatment groups.
- The method for determining the number of replications is often based on a test of a hypothesis about differences among treatment group means.

How many replications?

- The required number of replications is affected primarily by four factors that are required for calculations:
- The variance (σ^{2}) or the percent coefficient of variation (\%CV)
- The size of difference (that has physical significance) between two means ($\bar{\delta}$)
- The significance level of the test (α), or the probability of Type I error
- The power of test $1-\beta$, or the probability of detecting δ, where β is the probability of a Type II error

The required replication number for each treatment group

- The required replication number for each treatment group, r, for two-sided alternatives is estimated with

$$
r \geq 2\left(z_{\alpha / 2}+z_{\beta}\right)^{2}\left(\frac{\sigma}{\delta}\right)^{2}
$$

- Where $z_{\alpha / 2}$ is the standard normal variable exceeded with probability $\alpha / 2$ and z_{β} is exceeded with probability β.

Test for One Mean

$H_{0}: \mu=\mu_{0} \quad H_{a}: \mu=\mu_{1}\left(=\mu_{0}+\delta\right)$
Under $H_{0}, Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{r}} \sim N(0,1)$
Under $H_{a}, Z=\frac{\bar{X}-\mu_{1}}{\sigma / \sqrt{r}} \sim N(0,1)$

$$
x=\frac{\sigma}{\sqrt{r}} Z_{\frac{\alpha}{2}}+\mu_{0}
$$

$$
=\frac{\sigma}{\sqrt{r}} Z_{1-\beta}+\mu_{1}
$$

$$
0.2
$$

$$
0.15
$$

0.25 B. Distribution under H a: $N\left(\mu_{1}, \sigma^{2}\right)$

$$
r=\left[\frac{\left(Z_{1-\beta}-Z_{\frac{\alpha}{2}}\right) \sigma}{\mu_{0}-\mu_{1}}\right]^{2}
$$

$$
ŋ Z_{1-\beta}=Z_{\beta}
$$

$$
r=\left(z_{\alpha / 2}+z_{\beta}\right)^{2}\left(\frac{\sigma}{\delta}\right)^{2}
$$

Test for Two Means

$H_{0}: \mu_{1}-\mu_{2}=0$

$$
H_{a}: \mu_{1}-\mu_{2}=\delta, \delta \neq 0
$$

Under $\mathrm{H}_{0}, Z=\frac{\bar{X}_{1}-\bar{X}_{2}}{\frac{\sigma \sqrt{2 / n}}{\bar{X}} \sim N(0,1), ~(0) ~}$
Under $\mathrm{H}_{\mathrm{a}}, Z=\frac{\bar{X}_{1}-\bar{X}_{2}-\delta}{\sigma \sqrt{2 / n}} \sim N(0,1)$

$$
\bar{X}_{1}-\bar{X}_{2}=\frac{\sigma}{\sqrt{r / 2}} Z_{\frac{\alpha}{2}}
$$

$$
=\frac{\sigma}{\sqrt{r / 2}} Z_{1-\beta}+\delta
$$

$$
r=2\left[\frac{\left(Z_{1-\beta}-Z_{\frac{\alpha}{2}}\right) \sigma}{\mu_{0}-\mu_{1}}\right]^{2}
$$

$$
r=2\left(z_{\alpha / 2}+z_{\beta}\right)\left(\frac{\sigma}{\delta}\right)^{2}
$$

The required replication number for each treatment group

- The replication number can be estimated with knowledge of the percent coefficient of variation, \%CV. The \%CV is substituted for σ where \%CV =100(σ / μ). The difference δ must be expressed as a percentage of the overall expected mean of the experiment, $\% \delta=100(\delta / \mu)$.

$$
r \geq 2\left(z_{\alpha / 2}+z_{\beta}\right)^{2}\left(\frac{\% C V}{\% \delta}\right)^{2}
$$

The required replications

Let's find Type I and II errors together

- Binomial distribution
- $H_{0}: p=0.5 ; H_{\mathrm{a}}: p \neq 0.5 ; n=6, \mathrm{X} \sim \mathrm{B}(n=6, p)$
- Reject H_{0} when $\mathrm{X}=0$, or 6
- Accept H_{0} when $X=1, \ldots, 5$
- $\alpha=P(X=0 \mid p=0.5)+P(X=6 \mid p=0.5)$ $=0.0156+0.0156=0.0312$
- Given $p=0.75$, find the Type II error β, and the statistical power

$$
-\beta=P(1<=X<=5 \mid p=0.75)=0.8218 ; \text { Power=0.1782 }
$$

- Given $p=0.90$, find the Type II error β, and the statistical power
$-\beta=P(1<=X<=5 \mid p=0.90)=0.4686$; Power=0.5314
$X \sim$ Binomial (n, p), $\mathrm{n}=6$
$\{0,5\}$ is the rejection region, i.e. $\mathrm{EstP}=0.0$ or 1.0
$\{1,2,3,4\}$ is the acceptance region
$X \quad \mathrm{HO}: \mathrm{p}=0.5 \quad \mathrm{p}=0.75 \quad \mathrm{p}=0.9$

0	0.015625		0.000244		0.000001
1	0.093750		0.004395		0.000054
2	0.234375		0.032959		0.001215
3	0.312500		0.131836		0.014580
4	0.234375		0.296631		0.098415
5	0.093750		0.355957		0.354294
6	0.015625		0.177979		0.531441
		Power		Power	
	0.031250		0.178223		0.531442

Type II error
0.821777

Type II error
0.468558

Let's find Type I and II errors together

- Binomial distribution
- $H_{0}: p=0.5 ; H_{\mathrm{a}}: p \neq 0.5 ; n=30, \mathrm{X} \sim \mathrm{B}(30, p)$
- Reject H_{0} when $X<=9$, or $>=21$
- Accept H_{0} when $\mathrm{X}=10, \ldots, 20$
- Find α
- Given $p=0.75$, find the Type II error β, and the statistical power
- Given $p=0.90$, find the Type II error β, and the statistical power

$$
X \quad H 0: p=0.5
$$

$$
p=0.75
$$

$$
p=0.9
$$

0	0.000000	0.000000
1	0.000000	0.000000
2	0.000000	0.000000
3	0.000004	0.000000
4	0.000026	0.000000
5	0.000133	0.000000
6	0.000553	0.000000
7	0.001896	0.000000
8	0.005451	0.000000
9	0.013325	0.000000
10	0.027982	0.000002

Type I error
0.042774
iv U.144404 u.0uiv0

16	0.135435	0.005430
17	$\underline{n} 111535$	$\underline{n} .013414$
18	0.080553	0.029065
19	0.050876	0.055070

$20 \quad 0.027982 \quad 0.090865$

Type II error

Power

0.000000
0.000000

0.803407

0.999546

21	0.013325	0.129807
22	0.005451	0.159309

$23 \quad 0.001896 \quad 0.166236$
0.196593

Type II error
0.000454

0.000553

0.145456

Pow.000000

25

0.000133

0.104728
0.060420
0.
0.000026
0.026853
0.236088
0.000004
0.008631
0.227656
0.000000
0.001786
0.141304
0.000000
0.000179
0.042391

