Lecture 3

Sampling, sampling
distributions, and
parameter estimation



Sampling



Definition

» Population is defined as the collection
of all the possible observations of
Interest.

 The collection of observations we take
from the population is called a sample.

* The number of observations in the
sample is called the sample size.



Sampling

 When we are interested in a
population, we typically study a
sample of that population rather than
attempt to study the entire population.

* The sample should ideally be a
representation of the population with
similar characteristics.



Principles of sampling

e 1. Same distribution. All variables
In the sample X,, ..., X, have the
same distribution as in the entire
population.

» 2. Independence. X,, ..., X, are
iIndependent. In other words, each
observation has no relationship
with others.



Simple random sampling

« Simple random sampling is the most
straightforward of the random sampling
strategies. We use this strategy when we
believe that the population is relatively
homogeneous for the characteristic of
Interest. 1.e. no population structure



Simple random sampling

* For example, let's say you were surveying
first-time parents about their attitudes
toward mandatory seat belt laws. You
might expect that their status as new
parents might lead to similar concerns
about safety.

* On campus, those who share a major
might also have similar interests and
values; we might expect psychology
majors to share concerns about access to
mental health services on campus.



Simple Random Sampling
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Other sampling methods

» Systematic sampling

o Stratifled sampling

* Proportionate sampling
* Cluster sampling

* Multistage sampling

* And so on



Sample statistic and
distribution



Sample mean and sample variance

* Let X, ..., X, be a random sample
+ Sample mean yzlixi
L)

. . v
+ Sample variance $°=— (X, = X)
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« Sample standard error (deviation)




For frequency or grouping data

* Let X,, ..., X, be group values, f,, ..., f,
be the frequency of each group,
f,+ ...+ =1

- Sample mean yzzk:f_x_
=1

« Sample variance

32 =ifi(xi - X =Zk:fixf—>?2
1=1 1=1



Properties of sample
mean and variance

Let X, ... ,X, be arandom sample from a normal
distribution N(x,0°) , and let

- 1< ) 1
s nZ—lzxI n_lizl(
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Then we have

(1) X and S? are independent random variables.
(2) X has a normal distribution, i.e. N(x,o?/n)

(3) (n-1)S?/o* has a chi-squared distribution with
n — 1 degrees of freedom.

(n—-1)S* =SS =) (X;—X)*=> X7 -nX"
=1 =1



2 distribution

» If X~N(0,1), i=1,...,n,
and X, are
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Student’s t distribution

. If X~N(0,1), Y~ 2" (n), X
and Y are independent

Define

{ =

X

Y/n

Then t obeys t

distribution with n
degrees of freedom,
denoted by

t~t(n)

6

t (n)




F distribution

« X and Y are independent,
X~z (n) Y~x(n)

Define -~ X/n

F — 0.4 -
Y/n2 p(x) 0.3

Then F obeys F distribution’, |

F(d1, d2)

with degrees of freedom n,
and n,, denoted by

F~F(ny, n,)



Relationship between different distributions

n=1

Binomial > Two-point
distribution (< distribution
I I X, + X, + -+ x|
: :p is large; , _
: : np IS moderate Time for the Time for the
LY first jump ath jump
[ (Unit time) (Time interval At) 5| Exponential —— > Erlang dis-
|  Poisson Poisson distribution |, + 7, + -+ 7| tribution ['(a, A)
I . . . . . .
| distribution p(A) distribution p(AAt) exp(N) >0
'nis large A=P
nis
: J a=n/2, B =2
A4 _ X+ X) + -+ X2 v
Standardized > X?(n) [ Gamma
Normal X, "~ O Z " 1 x> 2 distribution I'(a, B)
distribution N(0,1) X, and Zar 5 2w —
- A < N dent x, and x, are independent . I ,1)
nis : F(X) n iS I\d e T = L F = XI/XZ j and Xﬂ’ are independent
|arge : rg‘\ \/Z_/H v m/ n ! Xi
Onif t distribution F distribution s
niform v
t(n F(m, n .
distribution | () (. ) Beta distribution
U(0,1) 0=1, B=1 Beta(a, )




Statistical inference

» Statistical inference: Drawing
conclusions about the whole
population on the basis of a sample

* Precondition for statistical inference:
A sample is randomly selected from
the population (=probability sample)



Parameter estimation



Parameter estimation

« Parameter estimation is an important
problem in statistics. It can divided into two

types:

— 1. Point estimation: it involves the use of
sample data to calculate a single value (known
as a statistic) which iIs to serve as a "best
guess” or "best estimate" of an unknown (fixed
or random) population parameter.

— 2. Interval estimation: it is the use of sample
data to calculate an interval of possible (or
probable) values of an unknown population
parameter.



Point estimation

« X~F(x, 8), 8 is unknown. The target of
point estimation Is to give a statistic and
there iIs a group of observations X,, X, ...,
X,. The estimator of 6 denotes as

0=06(X,, X, X)

* For example, when 6=E(X), we can use
mean of samples as the estimator of 6, I.e.



Two commonly used
point estimation methods

« Maximum likelihood method
* Moment method



Maximum likelthood
estimate (MLE)

* This method Is to maximize the
likelihood function for getting the
estimator of parameters.

* The probability density function of X
IS p(X; 6), and O Is unknown.
Suppose there Is a sample
observations X;, X, ..., X, for X.



Maximum likelihood method

* Then the combined probability function is
L(0) = L(X,, X,,-++, X;0) = p(X,;0) p(X,;0)--- p(X ;) = Hp(x 0)

 We call the above function the Ilkellhood
function. Define the logarithm of likelihood
as n
InL(O) =In L(X,, X,,"+, X ;0) = Zln p(x.;6)
dInL@) )
e Let r:w . then we can calculate the

maximum Ilkellhood estimator (MLE) of 0.




Maximum likelihood method

 When the likelihood function contains k
parameters 4,6,,---,6,, then

L(91,6’2,---,9k)=Hp(><i;91,92,"',9k)
=1

« The maximum likelihood estimator of

N

0,0, --,0 : 0. = éj(Xl,Xz,'“,Xn), i=1,...k

1

are the solution of k equations

oInL(b,,6, ---,6,)
06,

=0,1=1,2,---,K



Example

* Assume X, , X,, ..., X, are random
samples from a normal distributionN(x o°),
how to get the maximum likelihood
estimator of parameters zand o

 Solution: The likelihood function Is

(X, —f)z]

20

L(1,0°) = H\/—G Xp[—

=( : zjz o0 - Ziz g(xi uf

27T




Example
* Then

n n 1
Ny, 6%)=——IQ2r)——Inc? - (X — 11)?
H > > 202%: i #

* Then the derivative equations are

-
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ou “ 0221: “
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Example

 So the solutions are

luzlznlxi =X

N 5o
) n
02:£Z<Xi_ﬂ)2
! N5



Example
« When £ is known, MLE of o° is

(%2 ZEZ(Xl _,Ll)z
)
e If 1 is unknown, MLE of o°is
o 1 —
6% == (X, —x)°
n<

» MLE of &° is not equal to the sample
variance! Which one is better?



Moment method

» Basic idea: equating sample moments with
unobservable population moments and
then solving those equations for the
guantities to be estimated.

» Suppose the probability density function of
Xisp(x; 6,6, --,06,), then the r ™ moment
of XIS

v =E(X") :fooxrp(x;é’l, a,,---, 6, )dx



Moment method

» Suppose there is a sample observations
X{, X5, ..., X, for X. Then the r " moment

of samples are n
p ar — EZX;’
§
« Equate the j ™ (j=1, ..., k) sample moments

with unobservable population moments

0,(6,0,,-,6,) =2
<02(91’62’“"(9k) =d,

% (60,,6,,---,6,) = 3,



Moment method

» Solve the equations, then we can get the
estimatorof ©: 6,6,,---, 6,

« We call them the moment estimators of 6.



Example

Xy Xy, ..., X, are samples from Uniform
distribution

1
p(X, 9):45,0<XSQ
0, otherwise
+00 1 0 0
Then o ZﬂZLO Xp(x, &)dx =5j0 Xolx =5

1n
61=—in
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6 A_l” =
So E_ _nizllxi—x



Desirable properties of estimator

Since estimator gives an estimate that
depends on sample points (X;, X,,..., X),
estimate Is a function of sample points.
Sample points are random variable,
therefore estimate is random variable and
has probabillity distribution.

We want that estimator to have several
desirable properties like

1. Unbiasedness
2. Effectiveness
3. Minimum mean square error



Unblasedness

* An estimator is said to be unbiased if the
expected value of the estimator Is equal to
true value of the parameter being
estimated, or

E@O) = 6

» Example: sample proportion is the
unbiased estimator of population proportion



Effectiveness

The most efficient estimator among a
group of unbiased estimators Is the one
with the smallest variance.

Generally speaking, assuming 6,(X,,X,,---,X.)

and 6,(X,,X,,---,X ) are two unbiased
estimators of 8, and V(6,) <V (6,) , then g, is
sald to be more effective than g, .



Minimum mean square error (MSE)

» Basic idea: minimize the average
deviation between the estimation and
true value.

 We call the estimator which minimize
E{[O(X., X,,---,X,)- 01’}

as the minimum mean square error
estimator of 6.



Interval estimation

« Estimation of the parameter is not
sufficient. It Is necessary to analyze and
see how confident we can be about this
particular estimation.

* One way of doing it Is defining confidence
Intervals. If we have estimated 6 we want
to know if the “true” parameter is close to
our estimate. In other words we want to
find an interval that satisfies following
relation:

P(G, <0<(G))=21l-«



Interval estimation

* |.e. probability that “true” parameter
6 is in the interval (G, G,) IS greater
than 1-c.

 Actual realization of this interval - (g,,
gy) Is called a 100(1- a)% of
confidence interval, limits of the
interval are called lower and upper
confidence limits. 1- a Is called
confidence level.



Example

« If population variance is known (c?)
and we estimate population mean then

_ X—u

~o/n

* We can find from the table that
probability of Z is more than 1 is equal
to 0.1587. Probability of Z Is less than
-1 Is again 0.1587. These values

comes from the table of the standard
normal distribution.

Z ~N(0,1)



Example

« Now we can find confidence interval for the

sample mean. Since:
P(-1<Z <) =P(Z<1)-P(Z<-1)=1-P(Z>1)-P(Z <-1)

=1-2%0.1587 =0.6826
* Then for u we can write

<1) P(x—c/vJn < u<x+o/n)=0.6826

P(— 1<G 7

« Confidence level that “true” value is within 1
standard error (standard deviation of sampling
distribution) from the sample mean is 0.6826.
Probability that “true” value is within 2 standard
error from the sample mean is 0.9545.



Interval estimation

* Above we considered the case when
population variance is known in advance. It
IS rarely the case In real life. When both
population mean and variance are unknown
we can still find confidence intervals. In this
case we calculate population mean and
variance and then consider distribution of

the statistic: —
7 =>4

- S/4n

« Here S? is the sample variance.




Interval estimation

» Since it is the ratio of the standard normal
random variable to square root of ¥? random
variable with n-1 degrees of freedom, Z has
Student’s t distribution with n-1 degrees of
freedom. In this case we can use table of t
distribution to find confidence levels.

* |t Is not surprising that when we do not know
sample variance confidence intervals for the
same confidence levels becomes larger. That
IS price we pay for what we do not know.



Interval estimation

* If number of degrees of freedom
becomes large, then t distribution Is
approximated well with normal
distribution. For n>100 we can use
normal distribution to find confidence
levels, intervals.



The Law of Large Numbers
and Central Limit Theorem



The Law of Large Numbers

* Assume X, , X,, ..., X, are random
samples of X E(X) w1 and V(X) exist.
Let X = Zx then for any given ¢>0,

lim P{[X — 4 < £{=1

N—o0



The Central Limit Theorem

Let X be the mean of a random
sample X, X,, ..., X, of size n from a
distribution with a finite mean p and a
finite positive variance o2. Then

_X-u

_6/\/ﬁ

Y > N (0, 1)




Small probability event

 Asmall probability event is an event
that has a low probabillity of occurring.

* The small probability event will hardly
happen in one experiment. This
principle Is used for hypothesis and
tests.

* An event is a small probability event,
so it will hardly happen in theory. But If
it happens actually, then we reject H,,.



Experiments on the distribution of
sample mean and sample variance

* Use RAND() in EXCEL to generate pseudo-
random numbers X, and X, of U(0,1):
uniform distribution on the interval [0, 1]

» Use transformation to generate random
numbers Y, and Y, of N(O, 1)

Y, =J—2In(X,)sin(27X,),Y, = /- 2In(X,) cos(27X,)

» Use transformation to generate random
numbers Z, and Z, of N(u, ¢?)

=0 +u




Let’s do some exercises together

Draw 100 random samples from U(O, 1)

Draw the frequency distribution of the 100
samples

Draw 100 sets of 5 samples from N(10, 10)

Draw the frequency distribution of the 500
samples, and compare it with N(10, 10)

Draw the frequency distribution of the 100
sample means and 100 sample variances

Compare the distribution of X with N(10, 2)
Compare the distribution of 45%/10 with »°(4)




