
Lecture 11 

 

 Correlation and 

Regression  



Overview of the Correlation 

and Regression Analysis  
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The Correlation Analysis 
• In statistics, dependence refers to any statistical 

relationship between two random variables or two sets of 

data. Correlation refers to any of a broad class of 

statistical relationships involving dependence. 

• Familiar examples of dependent phenomena include the 

correlation between the physical statures of parents and 

their offspring, and the correlation between the demand 

for a product and its price.  

• Correlations are useful because they can indicate a 

predictive relationship that can be exploited in practice.  

– For example, an electrical utility may produce less power on a 

mild day based on the correlation between electricity demand 

and weather. In this example there is a causal relationship, 

because extreme weather causes people to use more electricity 

for heating or cooling; however, statistical dependence is not 

sufficient to demonstrate the presence of such a causal 

relationship (i.e., Correlation does not imply causation). 



Pearson ’s Contribution to Statistics 
• Pearson's work was all-embracing in the wide application and 

development of mathematical statistics, and encompassed the fields of 

biology, epidemiology, anthropometry, medicine and social history. In 

1901, with Weldon and Galton, he founded the journal Biometrika 

whose object was the development of statistical theory. 

Karl Pearson 

(1857-1936)   

• Pearson ’s Correlation coefficient: defined as the 

covariance of the two variables divided by the 

product of their standard deviations.  

• Method of moments: Pearson introduced moments, 

a concept borrowed from physics, as descriptive 

statistics and for the fitting of distributions to samples. 

• Foundations of the statistical hypothesis testing 

theory and the statistical decision theory.  

• Pearson's chi-squared test: A hypothesis test using 

normal approximation for discrete data. 

• Principal component analysis: The method of 

fitting a linear subspace to multivariate data by 

minimizing the chi distances.  
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The Regression Analysis 

• In statistics, regression analysis is a statistical technique for 

estimating the relationships among variables. It includes many 

techniques for modeling and analyzing several variables, when 

the focus is on the relationship between a dependent variable 

and one or more independent variables.  

• More specifically, regression analysis helps one understand how 

the typical value of the dependent variable changes when any 

one of the independent variables is varied, while the other 

independent variables are held fixed.  

• Regression analysis is widely used for prediction and 

forecasting, where its use has substantial overlap with the field 

of machine learning.  

• Regression analysis is also used to understand which among 

the independent variables are related to the dependent variable, 

and to explore the forms of these relationships.  



History of Regression 
• The earliest form of regression was the method of least squares, 

which was published by Legendre in 1805, and by Gauss in 1809. 

Gauss published a further development of the theory of least squares in 

1821, including a version of the Gauss–Markov theorem. 

• The term "regression" was coined by Francis Galton in the nineteenth 

century to describe a biological phenomenon. The phenomenon was 

that the heights of descendants of tall ancestors tend to regress down 

towards a normal average (a phenomenon also known as regression 

toward the mean 

• In the 1950s and 1960s, economists used electromechanical desk 

calculators to calculate regressions. Before 1970, it sometimes took up 

to 24 hours to receive the result from one regression. 

• Regression methods continue to be an area of active research. In recent decades, new 

methods have been developed for robust regression, regression involving correlated 

responses such as time series and growth curves, regression in which the predictor or 

response variables are curves, images, graphs, or other complex data objects, regression 

methods accommodating various types of missing data, nonparametric regression, 

Bayesian methods for regression, regression in which the predictor variables are 

measured with error, regression with more predictor variables than observations, and 

causal inference with regression. 



Galton’s Contribution to 

Correlation and Regression 
• was an English Victorian polymath: anthropologist, 

eugenicist, tropical explorer, geographer, inventor, 

meteorologist, proto-geneticist, psychometrician, and 

statistician.  

• Galton produced over 340 papers and books. He 

also created the statistical concept of correlation 

and widely promoted regression toward the mean. 

He was the first to apply statistical methods to the 

study of human differences and inheritance of 

intelligence, and introduced the use of questionnaires 

and surveys for collecting data on human 

communities, which he needed for genealogical and 

biographical works and for his anthropometric studies. 

• He was a pioneer in eugenics, coining the term itself 

and the phrase "nature versus nurture". His book 

Hereditary Genius (1869) was the first social scientific 

attempt to study genius and greatness 

Sir Francis Galton 

(1822-1911)   



Hereditary Stature by F. Galton (1886) 

• 1078 pairs of son (y) and father (x)  

• Average of sons: m(y) = 69 inches  

• Average of fathers m(x) = 68 inches  

• On average, taller father has taller son  

• Can we use y=x+1 to predict son’s stature?  
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Regression of son on father’s height 

• When grouping on 

fathers 

– For fathers x=72 [4 in. 

taller than m(x)], y=71 

(2 in. shorter than x+1 

and 1 in. shorter than x);  

– For fathers x=64 [4 in. 

shorter than m(x)], y=67 
(2 in. taller than x+1 and 

3 in. taller than x;   



Regression of offspring on 

mid-parent height  

• Slope from 

offspring and 

mid-parent is 

higher than 

slope from son 

and father!  



Galton’s explanation of regression  

• Resemblance between offspring and 

parents 

• Regression  

– The term "regression" was coined by Francis 

Galton in the nineteenth century to describe 

a biological phenomenon.  

– The phenomenon was that the heights of 

descendants of tall ancestors tend to 

regress down towards a normal average (a 

phenomenon also known as regression 

toward the mean). 



Correlation Analysis 



Correlation analysis 

• Correlation Analysis is the study of the 

relationship between two variables. 

• Scatter Plot 

• Correlation Coefficient 

 

 



Scatter plot 

• A scatter plot is a graph of the 

ordered pairs (X,Y) of numbers 

consisting of the independent 

variables X and the dependent 

variables Y.  

 

• It is usually the first step in 

correlation analysis. 



Scatter plot example 

• The plot shows the relationship 

between the grade and the hours 

studied of a course of six students  

 
The graph suggests a 

positive relationship 

between hours of 

studies and grades  
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Correlation coefficient 

• Measures the strength and direction of the 

linear relationship between two variables X 

and Y 

• Population Correlation Coefficient: 

 

 

• Sample Correlation Coefficient: 
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Correlation coefficient 

• The range of correlation coefficient is -1 to 1.  

• If r<0, it indicates a positive linear relationship 

between the two variables. (when one variable 

increases, the other decreases and vice versa) 

• If r>0, it indicates a positive linear relationship 

between the two variables. (both variables 

increase or decrease at the same time) 

• If r=0, it indicates the two variables are not 

related. (not necessarily independent) 



Distribution of r 

• The population correlation coefficient ρ is usually 

not known. Therefore, the sample statistic r is 

used to estimate ρ and to carry out tests of 

hypotheses. 

• If the true correlation between X and Y within the 

general population is ρ=0, and if the size of the 

sample          , then 
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Example 

• The observations of two variables are 

 

 

• Then r=-0.8371. H0: ρ=0 

 

  

 

• So at a 99% confidence level, the null 

hypothesis H0 of no relationship in the 

population (ρ=0) is rejected. 

 

X 35.5 34.1 31.7 40.3 36.8 40.2 31.7 39.2 44.2 

y 12 16 9 2 7 3 13 9 -1 
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Correlation coefficient 

• From the example, we find that the t 

statistic is a function of sample correlation 

coefficient r, sample size n and confidence 

level α.  

• For any particular sample size, an 

observed value of r is regarded as 

statistically significant at the 95% level if 

and only if its distance from zero is equal to 

or greater than the distance of the tabled 

value of r.  



Correlation coefficient (95% level) 

n ±r n ±r 
6 0.73 19 0.39 
7 0.67 20 0.38 
8 0.62 21 0.37 
9 0.58 22 0.36 

10 0.55 23 0.35 
11 0.52 24 0.34 
12 0.5 25 0.34 
13 0.48 26 0.33 
14 0.46 27 0.32 
15 0.44 28 0.32 
16 0.43 29 0.31 
17 0.41 30 0.31 
18 0.4 31 0.3 



Linear Regression Analysis 



Linear regression 

• Linear regression is used to study an 

outcome as a linear function of one or 

several predictors. 

– xi: independent variables (predictors) 

– y: dependent variable (effect) 

• Regression analysis with one independent 

variable is termed simple linear regression.  

• Regression analysis with more than one 

independent variables is termed multiple 

linear regression.  



Linear regression 

• Given a data set {yi, xi1, …, xip} of n statistical 

units, a linear regression model assumes that 

the relationship between the dependent variable 

yi and the p-vector of explanatory variables xi is 

linear. This relationship is modeled through a 

disturbance term or error variable εi. Thus the 

model takes the form 

  
nixxxy iippiii ,,2,1,2211   



Linear regression 

• Often these n equations are stacked together 

and written in vector form as 

Where  εXβy 
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Linear regression 

• yi is called the response variable or dependent 

variable 

• xi are called explanatory variables, predictor 

variables, or independent variables. The matrix 

is sometimes called the design matrix.  

• β is a (p+1)-dimensional parameter vector. Its 

elements are also called effects, or regression 

coefficients. β0 is called intercept. 

• ε is called the error term. This variable captures 

all other factors which influence the dependent 

variable yi other than the regressors xi.  



Ordinary least square (OLS) 

• Assume the linear model                   

satisfies the Gauss-Markov assumptions: 

 

    (later referred to as model 11.1) 

• The OLS method minimizes the sum of 

squared residuals, and leads to a closed-

form expression for the estimated value of 

the unknown parameter β: 
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Example 

• The following data set gives average 

heights and weights for American women 

aged 30–39 

Height (m) 1.47 1.5 1.52 1.55 1.57 1.6 1.63 1.65 

Weight (kg) 52.21 53.12 54.48 55.84 57.2 58.57 59.93 61.29 

Height (m) 1.68 1.7 1.73 1.75 1.78 1.8 1.83   

Weight (kg) 63.11 64.47 66.28 68.1 69.92 72.19 74.46  
  



Scatter plot 
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Example 

• The scatter plot suggests that the 

relationship is strong and can be 

approximated as a quadratic function.   

• OLS can handle non-linear relationships 

by introducing the regressor HEIGHT2. 

The regression model then becomes a 

multiple linear model: 

iiii hhw   2

321



Example 

• In matrix form: 

 

Where 

 

 

• The OLS estimator of     is  

 

• The relationship between weight and 

height is 

 

εHβw 
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Properties of OLS estimators 

• For model 11.1, the Least Square Estimator        

 

    

    has the following properties: 

1.   

2.   

3. (Gauss-Markov Theorem) Among any unbiased 

estimator of        ,         has the minimum variance. 
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Properties of OLS estimators 

1.   

 

2.   

 

• Here                                is called residual 

sum of squares. Its value reflects the 

fitness of the regression model. 

  yXXXXIy
TTTSS

1


1
ˆ 2




pn

SS

 



n

i

ii

T yySS
1

2
ˆˆˆ 



Centering and scaling 

• In application, centering and scaling of 

data matrix brings convenience. 

• Centering: 
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Centering and scaling 

• Scaling: 

 

    where                 ,   

 

• Since Z is centered and scaled, it satisfies: 
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Centering and scaling 

• R is called the correlation matrix of design matrix 

X. rij is the correlation coefficient between the ith 

and jth column of X.  

• The centered and scaled model takes the form 

 

 

• Correspondingly, the OLS estimator of the 

unknown parameter is  

εZβ1y  n
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Centering and scaling 

• When we have estimated values of intercept and 

regression parameters (α and              

respectively) in a centered and scaled model, 

we can put the regression equation as  
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Multicollinearity 



Multicollinearity 
• Multicollinearity occurs when there is a 

linear relationship among several 

independent variables. 

• In the case where we have two 

independent variables, X1 and X2, 

multicollinearity occurs when 

X1i=a+bX2i,where a and b are constants. 

• Intuitively, a problem arises because the 

inclusion of both X1 and X2 adds no more 

information to the model than the inclusion 

of just one of them. 



Multicollinearity 
• For model  

 

    the variance of, say, β1 is 

 

 

 

    where r12 is the correlation efficient between X1 and X2.  

 

• If X1 and X2 are linearly related, then              , and the  

    denominator goes to zero(in the limit), and the     

    variance goes to infinity, which means the estimator is  

    very unstable. 
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Perfect & near-perfect 

multicollinearity 
• What we have been discussing so far is really 

perfect multicollinearity. 

• Sometimes people use the term multicollinearity 

to describe situations where there is a nearly 

perfect linear relationship between the 

independent variables. 

• The assumptions of the linear regression model 

only require that there be no perfect 

multicollinearity. However, in practice, we almost 

never face perfect multicollinearity but often 

encounter near-perfect multicollinearity. 



Perfect & near-perfect 

multicollinearity 

• Although the standard errors are technically 

“correct” and will have minimum variance 

with near perfect multicollinearity, they will 

be very, very large. 

• The intuition is, again, that the independent 

variables are not providing much 

independent information in the model and so 

out coefficients are not estimated with a lot 

of certainty. 



Detection of multicollinearity  

1. Variance Inflation Factor (VIF) 

 

       

      where     is the coefficient of determination  

      of a regression of jth independent variable   

      on all the independent variables. 

      As a rule of thumb, VIF > 10 indicates high  

      multicollinearity. 
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Detection of multicollinearity  

2. Condition Number (k) 

 

 

where     and     are the maximum and 

minimum eigenvalue of the coefficient matrix 

of design matrix respectively. 

 

• As a rule of thumb, k>30 indicates high 

multicollinearity. 

m

k
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Remedies for multicollinearity 

1. Make sure you have not fallen into the 

dummy variable trap; including a dummy 

variable for every category (e.g., summer, 

autumn, winter, and spring) and including 

a constant term in the regression together 

guarantee perfect multicollinearity.  

2. Obtain more data, if possible. This is the 

preferred solution. 



Remedies for multicollinearity 

3. Standardize your independent variables. 

This may help reduce a false flagging of a 

condition index above 30. 

4. Apply a ridge regression or principal 

component regression. 

5. Select a subset of the independent 

variable(which will be discussed later) 

 



Hypothesis Tests 



Hypothesis tests for a single 

coefficient 

• Consider normal linear regression model 

 

Where 

• Suppose that you want to test the hypothesis 

that the true coefficient βj takes on some specific 

value, βj,0. The null hypothesis and the two-sided 

alternative hypothesis are 

εXβy 
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Hypothesis tests for a single 

coefficient 

• By the property of the OLS estimator, we have 

 

• Assume                           , we have 

 

• So when H0 is true, 
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Hypothesis tests for a single 

coefficient 
• Since in normal linear regression model there exists  

                          and independent of     , we have  

 

 

   where                        . 

 

• With a given confidence level α, when 

 

    we can refuse the null hypothesis H0, otherwise  

    cannot. 
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Hypothesis tests for a single 

coefficient 

• If the regression model is not normal. By the 

property of the OLS estimator, we have  

 

 

• So under H0, the t statistic 

 

 

    where            is the standard error of        . 
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ĵ



Hypothesis tests for the model 

• Consider normal linear regression model 

 

Where 

 

• To test hypothesis H0 on the model: β=0 

εXβy 

)N(0,~i.i.d. 2 i

  1-,-
1

2

nfyySS T

n

i

itot 


  pfyySS M

n

i

ireg 


,-ˆ
1

2

  1,ˆ-
1

2




pnfyySS M

n

i

iierr



Hypothesis tests for the model 

• Under H0,  
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pSS
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err

reg

Source D.F. SS MS F 

Model p SSreg MSreg=SSreg/p MSreg/MSerr 

Error n-p-1 SSerr MSerr=SSerr/(n-p-1) 

Total n-1 SStot 



Example 

• We also use this data: 

X 35.5 34.1 31.7 40.3 36.8 40.2 31.7 39.2 44.2 

y 12 16 9 2 7 3 13 9 -1 
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Calculation of SS 78.7y

Observation Prediction y Error 

12 9.5135 2.4865 

16 11.0529 4.9471 

9 13.6920 -4.6920 

2 4.2354 -2.2354 

7 8.0840 -1.0840 

3 4.3454 -1.3454 

13 13.6920 -0.6920 

9 5.4450 3.5550 

-1 -0.0530 -0.9470 

SSTot=249.5556, SSreg=174.9935, SSerr=74.6679 



ANOVA 

Source D.F. SS MS F P 

Model 1 174.99 174.99 16.41** 0.0049 

Error 7 74.67 10.67 

Total 8 249.56 



Test for coefficient 

• H0: β=0 

 

 

 

• So C11=0.007. Under H0, 

 

 

•                              , so we reject H0.  
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Model Selection in 

Regression 



Model selection 

• Model selection consists of two aspects: 

      1) linear or non- linear? 

      2) which variables to include? 

• In this course, we only focus on the second 

part, the variable selection in linear 

regression. 

• There are often 

        1) too many variables to choose from 

        2) different cost, different power 

        3) not an unequivocal “best” 



Opposing criteria 

• Good fit, good in-sample prediction: 

– Make R2 large or MSE small 

– Include many variables 

• Parsimony: 

– Keep cost of data collection low, 

interpretation simple, standard errors 

small 

– Include few variables 



Model selection criteria: 

Coefficient of determination R2 

• Definitions: 

 

     where  

     

 

• In regression, the R2 is a statistical measure of 
how well the regression line approximates the 
real data points. An R2 closer to 1 indicates a 
better fit. 

• Adding predictors(independent variables) always 
increase R2. 

tot

err

tot

reg

SS

SS

SS

SS
R  12

   

 











n

i

iierr

n

i

itot

n

i

ireg

yySS

yySSyySS

1

2

1

2

1

2

ˆ

,ˆ



Example 

• In previous example: 

– SSTot=249.5556 

– SSreg=174.9935 

– SSerr=74.6679 
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Model selection criteria: 

Adjusted R2 

• Definitions: 

 

where R2 is the coefficient of determination. 

p is the number of variables of the model  

    (including the intercept). 

• adj R2 will only increase when a predictor 

has some value, not like R2. 

• Larger adj R2 (closer to 1) is better. 
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Model selection criteria: 

AIC and BIC 

• Definition: 

    AIC = −2(maximized log-likelihood) + 2p 

    BIC = -2(maximized log-likelihood) + p log(n) 

• For linear regression, 

   -2(maximized log-likelihood) = n log(SSerr) + C 

• Smaller value of AIC or BIC is better 

• Get a balance between model fit and model size: 

BIC penalizes larger models more heavily than 

AIC ⇒ BIC tends to prefer smaller models 



Model selection criteria: 

Mallow's Cp  

• Definition: 

 

where         estimated from the full model  and  

SSerr is obtained from a sub-model of interest. 

• Cheap to compute 

• Closely related to adj R2 and AIC, BIC. 

• Performs well in predicting. 
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Variable selection methods: 

Best subsets selection 

• Fit all possible models (all of the 

various combinations of explanatory 

variables) and evaluate which fits the 

data best based on the criteria 

above(except for R2 ). 

• Usually takes a long time when 

dealing with models with many 

explanatory variables. 



Variable selection methods: 

Forward selection 

• Starting with no variables in the model, 

testing the addition of each variable 

using a chosen model comparison 

criterion, adding the variable (if any) 

that improves the model the most, and 

repeating this process until none 

improves the model.  



Variable selection methods: 

Backward selection 

• Starting with all candidate variables, 

testing the deletion of each variable 

using a chosen model comparison 

criterion, deleting the variable (if any) 

that improves the model the most by 

being deleted, and repeating this 

process until no further improvement 

is possible.  



Variable selection methods: 

Stepwise selection 

• A combination of the forward 

selection and the backward selection, 

testing at each step for variables to 

be included or excluded. 



Model selection example 

• We will model a multiple linear regression for a 

dataset (Longley's Economic Regression Data) 

through different model selection approaches 

and criteria. 

• The dataset shows the relationship between the 

dependent variable GNP deflator and the 

possible predictor variables. 

• The objective is to find out the a subset of all the 

predictor variables which truly have an 

significant effect on the dependent variable and 

to evaluate the effect. 



GNP deflator and the possible predictor variables  

  
GNP 

Deflator 
GNP Unemployed 

Armed 

Forces 
Population Year Employed 

1947 83 234.289 235.6 159 107.608 1947 60.323 
1948 88.5 259.426 232.5 145.6 108.632 1948 61.122 
1949 88.2 258.054 368.2 161.6 109.773 1949 60.171 
1950 89.5 284.599 335.1 165 110.929 1950 61.187 
1951 96.2 328.975 209.9 309.9 112.075 1951 63.221 
1952 98.1 346.999 193.2 359.4 113.27 1952 63.639 
1953 99 365.385 187 354.7 115.094 1953 64.989 
1954 100 363.112 357.8 335 116.219 1954 63.761 
1955 101.2 397.469 290.4 304.8 117.388 1955 66.019 
1956 104.6 419.18 282.2 285.7 118.734 1956 67.857 
1957 108.4 442.769 293.6 279.8 120.445 1957 68.169 
1958 110.8 444.546 468.1 263.7 121.95 1958 66.513 
1959 112.6 482.704 381.3 255.2 123.366 1959 68.655 
1960 114.2 502.601 393.1 251.4 125.368 1960 69.564 
1961 115.7 518.173 480.6 257.2 127.852 1961 69.331 
1962 116.9 554.894 400.7 282.7 130.081 1962 70.551 



Full model 

Estimate and significance test  

of regression parameters 
  Estimate Std.Error t value Pr(>|t|) 

(intercept) 2946.85636 5647.97658 0.522 0.6144 

GNP 0.26353 0.10815 2.437 0.0376 

Unemployed 0.03648 0.03024 1.206 0.2585 

Armed Forces 0.1116 0.01545 0.722 0.4885 

Population -1.73703 0.67382 -2.578 0.0298 

Year -1.4188 2.9446 -0.482 0.6414 

Employed 0.23129 1.30394 0.177 0.8631 

R2 = 0.9926 



Full model 

• Not all the predictors have a 

significant effect on the dependent 

variable. (the p-value of some 

regression parameters are no less 

than 0.05)  

• The coefficient of determination R2 

reaches the maximum value (bigger 

than that of any sub-model). 



Best subset selection 

• Using the best subset selection with Cp 

Criterion, we get 3 predictor variables: 

 

 

 

• Using the best subset selection with adj R2 

Criterion, we get 4 predictor variables: 

GNP Unemployed 
Armed  

Forces 
Population Year Employed 

TRUE TRUE FALSE TRUE FALSE FALSE 

GNP Unemployed 
Armed  

Forces 
Population Year Employed 

TRUE TRUE TRUE TRUE FALSE FALSE 



Forward/Backward selection 

• Using the forward selection with 𝐴𝐼𝐶 

Criterion, we get only one predictor variable: 

 

 

 

• Using the backward selection with 𝐴𝐼𝐶 

Criterion, we get 3 predictor variables: 

GNP Unemployed 
Armed  

Forces 
Population Year Employed 

TRUE TRUE FALSE TRUE FALSE FALSE 

GNP Unemployed 
Armed  

Forces 
Population Year Employed 

TRUE TRUE TRUE TRUE FALSE FALSE 



Stepwise selection 

• Using the stepwise selection with 𝐴𝐼𝐶 

Criterion, we get 1 predictor variables: 

 

 

 

• As we mentioned above, different 

approaches may yield different selections, 

there is no unequivocal “best”.  

GNP Unemployed 
Armed  

Forces 
Population Year Employed 

TRUE FALSE FALSE FALSE FALSE FALSE 



Regression in Excel: LINEST(…) 



Exercises with SAS   

• Use SAS Proc Regression  


