
Lecture 10  
 

Categorical Data 
Contingency Tables, and  
Non-parametric Methods  



Categorical data 

• We will consider statistical problems 
based on data such that each observation 
can be classified as belonging to one of a 
finite number of possible categories or 
types. Observations of this type are called 
categorical data.  



An example of blood type  
• Counts of blood types in a number of 

people in an area: 
 
 

• How can we test the null hypothesis that 
the theoretical probabilities are the 
probabilities with which the observed data 
were sampled?  

Type A B AB O 
Obs. Number  2162 738 228 2876 

Type A B AB O 
Theo. Probability 1/3 1/8 1/24 1/2 



Test of Goodness of Fit 



The χ2 test  
• Suppose that a large population consists of 

items of k different types, and let pi denote 
the probability that an item selected at 
random will be of type i (i=1, …, k). 
 
 

• Let               be specific numbers such that   
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The χ2 test  
• Suppose that the following hypotheses are 

to be tested: 
• H0:             , for i=1,…,k 
• H1:             , for at least one value of i 
• We assume that a random sample of size 

n is to be taken from the given population. 
Ni denote the number of observations in 
the random sample that of type i. 
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The χ2 statistic 
• The following statistic 

 
 

has the property that if H0 is true and the 
sample size n          , then Q converges in 
the distribution to the χ2 distribution with k-1 
degrees of freedom. 
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Goodness of fit 
• The goodness of fit statistic, denoted by 

χ2 as a sample statistic, is 
 
 

• i.e. 
 

• The χ2 is the sum of the quantities for all 
k cells 
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The blood type example 
• Blood types in a number of people in an 

area. H0:  
 
 
 

• The four expected counts under H0 are 

Type A B AB O Total 
1/3 1/8 1/24 1/2 1 

Ni 2162 738 228 2876 6004 
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The blood type example 
• The χ2  test statistic is then 

 
 

• In the case of χ2 goodness of fit test, the p-
value equals   

• Here k=4, p-value is 1.42x10-4. If the 
significance level α=0.05, we will reject H0. 
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Likelihood Ratio Tests for 
Proportions 



Likelihood ratio tests for 
proportions 

• Although χ2 tests are commonly used in 
such examples, we could actually use 
parametric tests in these examples. 

• H0:             , for i=1,…,k 
• H1:             , for at least one value of i 
• So the likelihood function is 
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Likelihood ratio tests for 
proportions 

• If H0 is true, there is only one possible for 
the likelihood function, namely 
 
 

• It is not difficult to show that the MLE of pi 
is 

• The large-sample likelihood ratio test 
statistic is then 
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Likelihood ratio tests for 
proportions 

• The large-sample test reject H0 at level 
of significance of α0 if this statistic is 
greater than the 1-α0 quantile of the χ2 
distribution with k-1 degrees of freedom. 

• In LRT, k-1 can be seen as the 
difference in the number of independent 
parameters to be estimated under the 
two hypotheses. 0 under H0, k-1 under 
HA, so df=k-1.  



The example on blood type 
• Blood types (continued). The values of   

has been calculated.  
• Then the likelihood ratio test statistic is 

 
 

• The p-value is the probability that a χ2 
random variable with three degrees of 
freedom is greater than 20.16, namely 
1.57x10-4. This is nearly the same as the 
p-value from the χ2 test. 
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An example in genetics: A resistance 
gene is linked with a molecular marker 

F2 population  Resistant  Susceptible  
Marker type A H B A H B 
Sample size 572 1161 14 3 22 569 
Marker types A and B are parental types; H is the type of F1 hybrid 

Resistant and susceptible can be fitted by the 3:1 ratio (one 
dominance gene locus): χ2=0.17 (P=0.68). Marker types A, H, 
and B can be fitted by the 1:2:1 ratio (one co-dominance gene 
locus) : χ2=0.32 (P=0.57)  

But Resistance and Marker are not independent, i.e. can not be 
fitted by the 3:6:3:1:2:1 ratio.   



Goodness-of-Fit for 
Composite Hypotheses 



Goodness-of-fit for 
composite hypotheses 

• We can extend the goodness-of-fit test to deal with 
the case in which the null hypothesis is that the 
distribution of our data belongs to a particular 
parametric family. The alternative hypothesis is that 
the data have a distribution that is not a member of 
that parametric family. 

• There are two changes to the test procedure in going 
from the case of a simple null hypothesis to the case 
of a composite null hypothesis. First, in the test 
statistic Q, the probabilities      are replaced by 
estimated probabilities based on the parametric 
family. Second, the degrees of freedom are reduced 
by the number of parameters.   

0
ip



The χ2 test for composite null 
hypotheses 

• H0:  there exists a value of           such 
that               , for i=1,…,k 

• H1:  the hypothesis H0 is not true 
• Here θ=(θ1, θ2,…, θs) where s<k-1. 
• The assumption that s<k-1 guarantees 

that the hypotheses H0 actually restricts 
the values of p1, …, pk to a proper subset 
of the set of all possible values of these 
probabilities. 
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χ2 Statistic for composite null 
hypotheses 

• The following statistic 
 
 

 
has the property that if H0 is true and the 
sample size n          , then Q converges in the 
distribution to the χ2 distribution with k-1-s 
degrees of freedom. 
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Example 
• Genetics. Consider a gene that has two 

different alleles. Each individual in a given 
population must have one of three 
possible genotypes. If the alleles arrive 
independently from the two parents, and if 
every parent has the same probability θ of 
passing the first allele to each offspring, 
then the probabilities p1, p2 and p3 of the 
three different genotypes are 
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Example 
• It is desired to test the null hypothesis H0 

that the probabilities p1, p2 and p3 can be 
represented in this form. 

• For this data, k=3 and s=1. 
• Therefore, when H0 is true, the distribution 

of the statistic Q defined by 
 
           
which will be approximately the χ2 distribution 
with 1 degrees of freedom.  
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Determining the maximum 
likelihood estimates 

• When H0 is true, the likelihood function L(θ) 
for the observed numbers N1, …, Nk will 
be  
 
 

• Thus,  
• The MLE     will be the value of θ for which 

log L(θ) is a maximum. The multinomial 
coefficient does not affect the 
maximization and we shall ignore it. 
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Example 
• Genetics (continued). k=3. 

 
 
 
 

• It can be founded by differentiation that the 
value of θ for which log L(θ) is a maximum is 
 
 
 

• The value of the statistic Q can now be 
calculated from the observed numbers N1, N2 
and N3.    

( ) ( )( ) ( )( )
( ) ( ) ( ) 2log1log2log2

1log1loglog

)(log)(log

22321

2
32

2
1

3

1

NNNNN
NNN

NL
i

ii

+−+++=
−+−+=

= ∑
=

θθ
θθθθ

θπθ

( )321

21

2
2ˆ

NNN
NN
++

+
=θ



An example in MN blood type 
We want to test if the population in HW 

equilibrium: If (M, N)=(p, q), then (MM, MN, 
NN)=(p2, 2pq, q2) 

Genotype MM MN NN Total 
Sample size N1=233 N2=385 N3=129 N=747 
Predicted by 

Hardy-Weinberg Law 
242.70 366.18 138.38 747 

• (p, q) = (0.57, 0.43) 
• (p2, 2pq, q2) = (0.3249, 0.4902, 0.1849) 
• χ2=1.96 (df=1, P=0.16), i.e. the population 

is in HW equilibrium 



Contingency Tables 



Contingency tables 

• When each observation in our sample 
is a bivariate discrete random vector 
(a pair of discrete random variables), 
then there is a simple way to test the 
hypothesis that the two random 
variables are independent. The test is 
another form of χ2 test. 



Definition 
• A table in which each observation is 

classified in two or more ways is called a 
contingency table. 

• For example, a two-way contingency table. 
Candidate preferred 

Curriculum A B Undecided Totals 
Engineering and science 24 23 12 59 
Humanities and social sciences 24 14 10 48 
Fine arts 17 8 13 38 
Industrial and public administration 27 19 9 55 
Totals 92 64 44 200 



Two-way contingency table 
• Consider a two-way contingency table 

containing R rows and C columns. For 
i=1,…,R and j=1,…,C, let pij denote the 
probability that an individual selected at 
random from a given population will be 
classified in the ith row and the jth column 
of the table. 
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Two-way contingency table 
• Let Nij denote the number of individuals 

who are classified in the ith row and the jth 
column of the table. 
 
 
 

• Hypotheses to be tested: 
• H0:  pij=pi+p+j, for i=1,…,R, j=1,…,C 
• H1:  the hypothesis H0 is not true 
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The χ2 test of independence  
• Under H0, the unknown parameters pij 

of these RC cells have been 
expressed as functions of the 
unknown parameters pi+ and p+j .  

• Since 
   the actual number of unknown 
parameters to be estimated when H0 is 
true is s=(R-1)+(C-1)=R+C-2  
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The χ2 test of independence  
• Let      denote the MLE of the expected 

number of observations that will be classified 
in the ith row and the jth column of the table 
when H0 is true.  
 
 

• Q has the property that if H0 is true and the 
sample size n          , then Q converges in 
the distribution to the χ2 distribution with RC-
1-s=(R-1)(C-1) degrees of freedom. 
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Estimator  
• When H0 is true, pij=pi+p+j  
• Let      and       denote the MLE of pi+ and 

p+j. Then 
 
 
 

• Substitute this value into the equation of Q. 
The null hypothesis H0 should be rejected 
if Q>=d, where d is an appropriately 
chosen constant. 
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+ip̂
jp+ˆ

n
NN

n
N

n
NnppnE jiji

jiij
++++

++ =













== ˆˆˆ



Example 
• College survey (continued). From the data, we 

know that N1+=59, N2+=48, N3+=38 and N4+=55. 
Also N+1=92, N+2=64 and N+3=44. n=200, R=4 
and C=3. Expected cell counts are 

Candidate preferred 
Curriculum A B undecided Totals 
Engineering and science 27.14 18.88 12.98 59 
Humanities and social sciences 22.08 15.36 10.56 48 
Fine arts 17.48 12.16 8.36 38 
Industrial and public administration 25.30 17.60 12.10 55 
Totals 92 64 44 200 



Example 
• Compare the expected values with 

the true values Nij. 
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Example 
• Since R=4 and C=3, the 

corresponding tail area is to be found 
from a table of χ2 distribution with (R-
1)(C-1)=6 degrees of freedom.  

• P-value is 0.35. Therefore, we would 
only reject H0 at level α0 if α0>=0.3. 
That is, we cannot say the candidate 
preference depends on curriculum.  



Simpson’s Paradox 



Simpson’s Paradox 

• When tabulating discrete data, we need 
to be careful about aggregating groups.  

• Suppose that a survey has two 
questions. If we construct a single table 
of responses to the two questions that 
includes both men and women, we 
might get a very different picture than if 
we construct separate tables for the 
responses of men and women. 



An example of the paradox 
• Results of experiment comparing two 

treatments 
 
 

• Disaggregated by sex 

All patients Improved Not improved Percent improved 

New treatment 20 20 50 
Standard treatment 24 16 60 

Men only Improved Not improved Percent improved 

New treatment 12 18 40 
Standard treatment 3 7 30 

Women only Improved Not improved Percent improved 

New treatment 8 2 80 
Standard treatment 21 9 70 



An example of the paradox 
• According to the first table, the new 

treatment is superior to the standard 
treatment both for men and for women,  

• According to the second and third tables, 
the new treatment is inferior to the 
standard treatment when all the subjects 
are aggregated.  

• This type of result is known as Simpson’s 
paradox. 



The paradox explained 
• In the example, women have a higher rate 

of improvement from the disease than 
men have, regardless of which treatment 
they receive.  

• Furthermore, most of the women in the 
sample receive the standard treatment 
while most of the men received the new 
treatment. 



The paradox explained 
• The new treatment looks bad in the aggregated table 

because most of the people who weren’t  going to 
respond well to either treatment got the new treatment 
while most of the people who were going to respond 
well to either treatment got the standard treatment.  

• Even though the numbers of men and women in the 
experiment were equal, a high proportion of the 
women and a low proportion of men received the 
standard treatment.  

• Since women have a much higher rate of improvement 
than men, it is found in the aggregated table than the 
standard treatment manifests a higher overall rate of 
improvement than does the new treatment. 



The paradox explained 
• Simpson’s paradox demonstrates dramatically 

the dangers in making inferences from an 
aggregated table. 

• To avoid the paradox, the proportions 
of men and women among the subjects 
who receive the new treatment must be 
the same, or approximately the same, 
as the proportions of men and women 
among the subjects who receive the 
standard treatment.  

• It is not necessary that there be equal numbers 
of men and women in the sample. 



Express Simpson’s Paradox in  
probability terms 

• A: the event that a subject chosen for the 
experiment will be a man. 

• AC: the event that the subject will be a 
woman.  

• B: the event that a subject will receive the 
new treatment. 

• BC: the event that the subject will receive 
the standard treatment. 

• I: the event that a subject will improve. 



Express Simpson’s paradox in  
probability terms 

• Simpson’s paradox reflects the fact that it 
is possible for all three of the following 
inequalities to hold simultaneously: 
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Express Simpson’s paradox in  
probability terms 

• The discussion that we have just given in 
regard to the prevention of Simpson’s 
paradox can be expressed as follows:  

• If                        , then it is not possible for 
all three inequalities to hold. 

• Similarly, if                        , then it is not 
possible for all three inequalities to hold. 

( ) ( )CBABA PrPr =
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Summary 
• Simpson’s paradox occurs when the 

relationship between the two 
categorical variables in every part of a 
disaggregated table is the opposite of 
the relationship between those same 
two variables in the aggregated table. 

• Be careful with “structure” for pooling 
or combined analysis!  



Nonparametric Statistics 



Nonparametric statistics 
• In some problems, we have one specific 

distribution in mind of the data we will 
observe. 

• If that one distribution is not appropriate, 
we do not necessarily have a parametric 
family of alternative distributions in mind. 

• In these cases, and others, we can still test 
the null hypothesis that the data come from 
the one specific distribution against the 
alternative hypothesis that the data do not 
come from that distribution. 



Nonparametric statistics 
• We shall not assume that the 

available observations come from a 
particular parametric family of 
distributions.  

• Rather, we shall study inferences that 
can be made about the distribution 
from which the observations come, 
without making special assumptions 
about the form of that distribution. 



Example 
• As one example, we might simply 

assume that the observations form a 
random sample from a continuous 
distribution, without specifying the 
form of this distribution any further, 
and we might then investigate the 
possibility that this distribution is a 
normal distribution. 



Definition 
• Problems in which the possible 

distributions of the observations are 
not restricted to a specific parametric 
family are called nonparametric 
problems. 

• The statistical methods that are 
applicable in such problems are 
called nonparametric methods. 



Order Statistics  
• Sample: x1, x2, …, xn  
• Ordered sample: x1

* < x2
* < … < xn

*  
• Quantile statistics  

– 25% quantile 
– 25% quantile, also called Median, could be 

a better estimate of population mean in the 
case of non-normal distributions  

– 75% quantile  
• Rank: position of xk in order statistics, 

represented by rk.  



Nonparametric methods  
• Sign test 
• Rank test 
• Permutation test  
• Rank Correlation Coefficient, also called 

Spearman’s Rank Correlation  
 
 



Let’s work on previous 
examples together! 



An example in ABO blood type 
• Blood types in a number of people in an 

area. H0:  
 
 
 

• The four expected counts under H0 are 

Type A B AB O Total 
1/3 1/8 1/24 1/2 1 

Ni 2162 738 228 2876 6004 
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An example in genetics: A resistance 
gene is linked with a molecular marker 

F2 population  Resistant  Susceptible  
Marker type A H B A H B 
Sample size 572 1161 14 3 22 569 
Marker types A and B are parental types; H is the type of F1 hybrid 

Resistant and susceptible can be fitted by the 3:1 ratio (one 
dominance gene locus): χ2=0.17 (P=0.68). Marker types A, H, 
and B can be fitted by the 1:2:1 ratio (one co-dominance gene 
locus) : χ2=0.32 (P=0.57)  

But Resistance and Marker are not independent, i.e. can not be 
fitted by the 3:6:3:1:2:1 ratio:  



An example in MN blood type 
We want to test if the population in HW equilibrium: If 

(M, N)=(p, q), then (MM, MN, NN)=(p2, 2pq, q2) 

Genotype MM MN NN Total 

Sample size N1=233 N2=385 N3=129 N=747 
Predicted by Hardy-

Weinberg Law 
242.70 366.18 138.38 747 

• (p, q) = (0.57, 0.43) 
• (p2, 2pq, q2) = (0.3249, 0.4902, 0.1849) 
• χ2=1.96 (df=1, P=0.16), i.e. the 

population is in HW equilibrium 



An example in ABO blood type  
when we don’t have the expected frequencies  

• H0: this is a randomly mated population, i.e. 
the population is in HW equilibrium.  

• Need to estimate p(A), p(B), p(O) first.  
• By HWE, we mean:  

– p(AA)=p(A)2, p(AO)=2*p(A)*P(O) 
– p(BB)=p(A)2, p(BO)=2*p(B)*P(O) 
– p(AB)=2*p(A)*P(B) 
– p(OO)=p(O)2  

 

Type A B AB O Total 
Ni 2162 738 228 2876 6004 



Independence test of 
contingency tables  

Curriculum Candidate preferred 
A B Undecided 

Engineering and 
science 

24 23 12 

Humanities and 
social sciences 

24 14 10 

Fine arts 17 8 13 
Industrial and 
public 
administration 

27 19 9 
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