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Abstract It has long been recognized that epistasis or

interactions between non-allelic genes plays an important

role in the genetic control and evolution of quantitative

traits. However, the detection of epistasis and estimation of

epistatic effects are difficult due to the complexity of epi-

static patterns, insufficient sample size of mapping

populations and lack of efficient statistical methods. Under

the assumption of additivity of QTL effects on the phe-

notype of a trait in interest, the additive effect of a QTL can

be completely absorbed by the flanking marker variables,

and the epistatic effect between two QTL can be com-

pletely absorbed by the four marker-pair multiplication

variables between the two pairs of flanking markers. Based

on this property, we proposed an inclusive composite

interval mapping (ICIM) by simultaneously considering

marker variables and marker-pair multiplications in a linear

model. Stepwise regression was applied to identify the

most significant markers and marker-pair multiplications.

Then a two-dimensional scanning (or interval mapping)

was conducted to identify QTL with significant digenic

epistasis using adjusted phenotypic values based on the

best multiple regression model. The adjusted values retain

the information of QTL on the two current mapping

intervals but exclude the influence of QTL on other inter-

vals and chromosomes. Epistatic QTL can be identified by

ICIM, no matter whether the two interacting QTL have any

additive effects. Simulated populations and one barley

doubled haploids (DH) population were used to demon-

strate the efficiency of ICIM in mapping both additive QTL

and digenic interactions.

Introduction

Epistasis or interactions between non-allelic genes makes a

substantial contribution to the genetic control and evolution

of quantitative traits (Frankel and Schork 1996; Lynch and

Walsh 1998; Wade 2002; Kroymann and Mitchell-Olds

2005; Carlborg et al. 2003, 2006; Malmberg et al. 2005;

Zeng 2005). The pattern of epistasis for a trait can be very

complex, and the genetic model with epistatic effects

potentially contains a large number of model effects.

Therefore, it is more difficult to identify the epistatic QTL

and estimate the epistatic effects (Frankel and Schork

1996; Mackay 2001). Our knowledge of how interacting

genes influence the phenotype of quantitatively inherited

traits remains incomplete. Statistical methodology for

epistatic mapping is still under development.

Some mapping methods based on frequentist statistics,

such as interval mapping (Lander and Botstein 1989) and

regression interval mapping (Haley and Knott 1992;

Whittaker et al. 1996; Feenstra et al. 2006) may be

extended for mapping epistasis, but the mapping power

was low as the background genetic variation was not well
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controlled. Multiple interval mapping (MIM) proposed by

Kao et al. (1999) fits multiple putative QTL effects and

associated epistatic effects simultaneously in one model to

facilitate the search, test and estimation of positions, effects

and interactions of multiple QTL. However, it requires

deciding the number of model terms (main effect and

epistasis) in the model. As this is usually unknown, various

models of different complexities have to be tested (Doerge

2002). Different MIM model selection methods imple-

mented in the popular software of QTL Cartographer

(Wang et al. 2005) give different, sometimes controversial

mapping results, and the nature of the preferred model

selection method is not clear (Li et al. 2007). Jannink and

Jansen (2001) and Boer et al. (2002) proposed a statistical

method to map epistatic QTL by identifying loci of high

QTL by genetic background interaction through one-

dimensional scanning. In their methods, either large map-

ping populations derived from multiple related inbred-line

crosses are required, or the effective dimension of the

epistatic effects needs to be specified by users. Assuming

that QTL are at marker positions, multiple regression using

modified Schwarz Bayesian information criterion has been

proposed by Bogdan et al. (2004) and Baierl et al. (2006)

to map digenic interactive QTL.

The use of Bayesian models in QTL mapping has been

widely studied in recent years (Satagopan et al. 1996;

Uimari et al. 1996; Uimari and Hoeschele 1997; Sen and

Churchill 2001; Bogdan et al. 2004; Yi 2004; Yi et al.

2003, 2005). Earlier Bayesian models estimated the loca-

tions and the effect parameters for a pre-specified number

of QTL (Satagopan et al. 1996; Uimari et al. 1996), which

is normally unknown before mapping. To solve this

problem, Bayesian methods implemented via the revers-

ible jump Markov chain Monte Carlo (MCMC) algorithm

have been proposed (Uimari and Hoeschele 1997; Sillan-

pää and Arjas 1999). Yi et al. (2003) extended the

reversible MCMC Bayesian models to epistasis mapping.

Considering that the complexity of the reversible jump

steps increases computational demand and may prohibit

further improvements of the algorithm, Yi et al. (2005)

extended the composite model space approach proposed in

Yi (2004) to include epistatic effects. However, Bayesian

models have not been widely accepted due to the difficulty

and arbitrary in choosing priors, and the intensive com-

puting requirements. As pointed by Xu and Jia (2007),

most Bayesian models failed for a barley population

consisting of 145 doubled haploid (DH) lines and 127

markers, and therefore they proposed an empirical

Bayesian model.

Recently, Li et al. (2007) proposed an inclusive com-

posite interval mapping (ICIM) to improve the traditional

composite interval mapping (CIM; Zeng 1994) for QTL

with additive effects. In ICIM, marker selection was

conducted only once through stepwise regression by con-

sidering all marker information simultaneously. The

phenotypic values were adjusted by all markers retained in

the regression equation except the two markers flanking the

current mapping interval. The adjusted phenotypic values

were then used in interval mapping. This strategy effec-

tively separates the cofactor selection from the interval

mapping using ML method. Simulations showed that ICIM

is computationally less intensive, and has increased

detection power, reduced false discovery rate, and less

biased estimates of QTL effects (Li et al. 2007).

In this paper, we extend ICIM to map digenic interacting

QTL. The efficiency of the proposed method is demon-

strated through extensive simulations and one real

population in barley.

Material and methods

The basic linear model and its properties in mapping

digenic epistasis

For simplicity of theoretical derivation, we assume that two

inbred parents P1 and P2 differ in m QTL, which are dis-

tributed in m intervals flanked by m + 1 markers on one

chromosome. Intervals where no QTL are located are

viewed as having QTL with effects of zero. Multiple QTL

located in one marker interval are not considered here. The

parental QTL genotype is assumed to be Q1Q1Q2Q2…
QmQm for P1, and q1q1q2q2… qmqm for P2. Suppose that we

have a sample of n individuals from a backcross population

where P1 is used as the recurrent parent. For an individual

in a backcross population X = (x1, x2, … , xm, xm+1) rep-

resents known marker variables which are equal to 1 and -

1, standing for the two marker types (homozygote and

heterozygote), respectively, and G = (g1, g2,…, gm) rep-

resents the unknown QTL variables which are equal to 1

and -1, standing for the two QTL genotypes (homozygote

and heterozygote), respectively. Additive effects of QTL

are represented by a1, a2, … , am, respectively, and the

epistatic effect between QTL j and k is denoted by aajk (j, k

= 1, … , m and j \ k). Under the assumption of additivity

of QTL effects on phenotype, the genetic value G of an

individual under additive and epistasis genetic model can

be written in the following form:

G ¼
Xm

j¼1

ajgj þ
X

j\k

aajkgjgk: ð1Þ

The expectation of QTL genotype gj is dependent of the

position of the jth QTL on the chromosomal interval

flanked by the jth and (j + 1)th markers, and the length of

this interval (Zeng 1994; Whittaker et al. 1996), i.e.,
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EðgjjXÞ ¼ kjxj þ qjxjþ1; ð2Þ

where kj ¼
ðrj;jþ1�rj;qj

Þð1�rj;jþ1�rj;qj
Þ

rj;jþ1ð1�rj;jþ1Þð1�2rj;qj
Þ ; qj ¼

rj;qj
ð1�rj;qj

Þð1�2rj;jþ1Þ
rj;jþ1ð1�rj;jþ1Þð1�2rj;qj

Þ ;

rj;qj
is the recombination fraction between the jth marker

and the jth QTL, and rj,j+1 is the recombination fraction

between the jth and (j + 1)th markers. The expectation of

QTL genotype gjgk conditional on marker type X can be

proved as,

EðgjgkjXÞ¼kjkkxjxkþkjqkxjxkþ1þqjkkxjþ1xkþqjqkxjþ1xkþ1

¼EðgjjXÞEðgkjXÞ: ð3Þ

Therefore, the expectation of the genotypic value G in

model (1) conditional on known marker types can be

written as a linear function of all the marker variables and

their multiplications, i.e.,

EðGjXÞ ¼
Xm

j¼1

ajðkjxj þ qjxjþ1Þ

þ
X

j\k

aajkðkjkkxjxk þ kjqkxjxkþ1 þ qjkkxjþ1xk

þqjqkxjþ1xkþ1Þ

¼̂
Xmþ1

j¼1

bjxj þ
X

j\k

bjkxjxk; ð4Þ

where

b1 ¼ k1a1;

bj ¼ qj�1aj�1 þ kjaj if j ¼ 2; . . .;m;

bmþ1 ¼ qmam;

b12 ¼ k1k2aa12;

b1k ¼ k1qk�1aa1;k�1 þ k1kkaa1k if k ¼ 3; . . .;m;

b1;mþ1 ¼ k1qmaa1m;

bj;jþ1 ¼ qj�1qjaaj�1;j þ qj�1kjþ1aaj�1;jþ1

þ kjkjþ1aaj;jþ1 if j ¼ 2; . . .;m� 1;

bjk ¼ qj�1qk�1aaj�1;k�1 þ qj�1kkaaj�1;k þ kjqk�1aaj;k�1

þ kjkkaajk if j 6¼ 1; k 6¼ mþ 1 and j\k � 1;

bj;mþ1 ¼ qj�1qmaaj�1;m þ kjqmaajm if j ¼ 2; . . .;m� 1;

and bm;mþ1 ¼ qm�1qmaam�1;m:

Thus, the epistatic effect between QTL j and k only

contributes to bjk, bj+1,k, bj,k+1 and bj+1,k+1. If there is at least

one empty interval between the two current intervals (j,

j + 1) and (k, k + 1), and no QTL are located in their

neighboring intervals, i.e., (j - 1, j), (j + 1, j + 2), (k - 1,

k), and (k + 1, k + 2), aaj-1,k-1, aaj-1,k, aaj-1,k+1, aaj,k-1,

aaj,k+1, aaj+1,k-1, aaj+1,k and aaj+1,k+1 are equal to zero. In

this case, bjk = kj kk aajk, bj+1,k = qj kk aajk, bj,k+1 = kj qk aajk

and bj+1,k+1 = qj qk aajk, and they contain all the position

and effect information of the epistasis between the jth and

kth QTL. These properties provide the theoretical basis for

mapping epistasis in ICIM.

Suppose that we have a sample of n individuals from a

backcross population with observations on a quantitative

trait of interest and m + 1 ordered markers. The following

linear regression model based on equation (4) can be used

in QTL mapping,

yi ¼ b0 þ
Xmþ1

j¼1

bjxij þ
X

j\k

bjkxijxik þ ei; ð5Þ

where yi is the trait phenotypic value of the ith individual in

the mapping population; b0 is the overall mean of the linear

model; xij is a dummy variable for the genotype of the ith

individual at the jth marker, taking value 1 for homozygote

of marker type, and -1 for heterozygote; bj is the partial

regression coefficient of the phenotype on the jth marker

variable; bjk is the partial regression coefficient of the

phenotype on the multiplication variable of the jth and kth

markers; and ei is the residual random error which is

assumed to be normally distributed.

Stepwise regression for coefficient estimation

of markers and marker-pairs

The number of additive and epistatic QTL detectable for a

trait of interest using a moderate size of mapping popula-

tion, say 200 individuals, is less likely to be more than 20,

which is much lower than the number of marker and

marker pair variables. Thus, to identify the markers

flanking these QTL is to correctly select the best model

among all possible models, which is an issue of model

selection (Broman and Speed 2002; Sillanpää and Coran-

der 2002). A number of statistical methods are available to

search through the space of models and various criteria can

be used to select the best model (Miller 1990; Piepho and

Gauch 2001). However, there is no universally best model

selection method for all situations (Miller 1990). Here we

consider using stepwise regression, but we do not exclude

the possibility that other model selection methods may

achieve similar performance in model selection and

parameter estimation of model (5).

A two-stage stepwise regression strategy was adopted to

determine the parameters in model (5). Significant marker

variables in model (5) were selected in the first stage,

which is similar to ICIM for additive mapping (Li et al.

2007). Then stepwise regression was applied to the resid-

uals from the first stage to select significant marker pairs

and estimate their effects in model (5). Stricter probability

levels were applied in the second stage to avoid over-fitting

since the number of regression variables is much larger.

Theor Appl Genet (2008) 116:243–260 245

123



Two-dimensional interval mapping or scanning for

epistasis

When conducting two-dimensional scanning for epistatic

QTL, there are two current testing intervals represented by

(j, j + 1) and (k, k + 1), where j \ k. The observation

values in model (5) were adjusted by

Dyi ¼ yi �
X

r 6¼j;jþ1;k;kþ1

b̂rxir �
X

r 6¼j;jþ1

s 6¼ k; k þ 1

b̂rsxirxis: ð6Þ

where b̂r and b̂rs are the estimates of br and brs in model

(5), respectively. The adjusted phenotype Dyi thus obtained

contains the information of QTL in the two testing inter-

vals, which includes two positions and two additive effects

of individual QTL, and one epistatic effect between the two

QTL, and at the mean time, the additive and epistatic

effects of QTL located on other intervals and chromosomes

are completely controlled. The adjusted observation Dyi

does not change until either of the two testing positions

moves into a new interval.

Individuals in the mapping population can be classified

into sixteen groups based on their marker types (Table 1).

If there are two QTL (with the two alleles denoted as Qj

and qj, and Qk and qk) at the two testing positions, Dyi

follows a mixture distribution consisting of four QTL

genotypes: QjQjQkQk, QjQjQkqk, QjqjQkQk, and QjqjQkqk

(Table 1). The proportions of the four QTL genotypes for

each marker type group can be defined from recombination

frequencies (Table 1). Therefore, QTL at the current two

mapping positions can be tested by the following

hypotheses:

H0: l1 = l2 = l3 = l4 vs.

HA: at least two of l1, l2, l3 and l4 are not equal.

Then the log-likelihood function under the alternative

hypothesis HA is,

LA ¼
X16

j¼1

X

i2Sj

log
X4

k¼1

fjkf ðDyi; lk; r
2Þ

" #
ð7Þ

where Sj denotes the jth marker type group (j = 1, … , 16),

fjk (k = 1, … , 4) is the proportion of the kth QTL geno-

types in the jth group (Table 1), and f(�;lk, r2) represents

the density of the kth normal distribution N(lk, r2).

The expectation and conditional maximization (ECM)

algorithm (Dempster et al. 1977; Meng and Rubin 1993)

was used to estimate the four means and one variance in

equation (7). Since most individuals in groups 1, 4, 13, and

16 have QTL types QjQjQkQk, QjQjQkqk, QjqjQkQk, and

QjqjQkqk, respectively (Table 1), the initial values of the five

unknown parameters can be defined from these groups, i.e.,

lð0Þ1 ¼
1

n1

Xn1

i¼1

Dyi;l
ð0Þ
2 ¼

1

n4

Xsumðn1:n4Þ

i¼sumðn1:n3Þþ1

Dyi;

lð0Þ3 ¼
1

n13

Xsumðn1:n13Þ

i¼sumðn1:n12Þþ1

Dyi;l
ð0Þ
4 ¼

1

n16

Xn

i¼sumðn1:n15Þþ1

Dyi;

r2ð0Þ¼ 1

n1þn4þn13þn16

"
Xn1

i¼1

ðDyi�lð0Þ1 Þ
2

þ
Xsumðn1:n4Þ

i¼sumðn1:n3Þþ1

ðDyi�lð0Þ2 Þ
2þ

Xsumðn1:n13Þ

i¼sumðn1:n12Þþ1

ðDyi�lð0Þ3 Þ
2

þ
Xn

i¼sumðn1:n15Þþ1

ðDyi�lð0Þ4 Þ
2

#
;

where sum(n1:n4) denotes the summation from n1 to n4, and

so on. In the E-step, the posterior probability of the ith

individual (i = 1, … , n) belonging to the kth (k = 1, … , 4)

QTL genotype was calculated as,

w
ð0Þ
ik ¼ fjkf Dyi; l

ð0Þ
k ; r2ð0Þ

� � X4

h¼1

fjhf Dyi; l
ð0Þ
h ; r2ð0Þ

� �,
;

where j denotes the marker type group into which the ith

individual is classified. In the M-step, the five parameters

were updated as,

lð1Þk ¼
Xn

i¼1

w
ð0Þ
ik Dyi

Xn

i¼1

w
ð0Þ
ik

,
for k ¼ 1; � � � ; 4; and

r2ð1Þ ¼ 1

n

Xn

i¼1

X4

k¼1

w
ð0Þ
ik ðDyi � lð1Þk Þ

2:

The EM algorithm continues until the difference in the

likelihood between two consecutive iterations reaches a

pre-assigned precision, say 10-6 . The ML estimates thus

obtained are represented as l̂1; l̂2; l̂3; l̂4 and r̂2; from

which two additive effects (aj and ak) of the putative QTL

and their epistatic effect (aajk) can be estimated as follows,

aj ¼ 1

4
ðl̂1 þ l̂2 � l̂3 � l̂4Þ;

ak ¼ 1

4
ðl̂1 � l̂2 þ l̂3 � l̂4Þ; and

aajk ¼ 1

4
ðl̂1 � l̂2 � l̂3 þ l̂4Þ

Under the null hypothesis, H0, all Dyi follow the normal

distribution of N(l0, r2
0). The mean and variance of this

distribution can be estimated as,

l̂0 ¼
1

n

Xn

i¼1

Dyi and r̂2
0 ¼

1

n

Xn

i¼1

ðDyi � l̂0Þ2:

Thus, the log-likelihood function under the null hypothesis

H0 is,
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L0 ¼
Xn

i¼1

log½f ðDyi; l̂0; r̂
2
0Þ�:

The LOD score (denoted by LODA) at the current

testing positions can be calculated from the log-likelihoods

under the two hypotheses, i.e., LA - L0. Therefore, LODA

can be used to test whether there is a significant difference

among the four QTL genotypes. As Dyi contains the

information of QTL positions, additive and epistatic effects

in the two testing intervals, both additive and epistatic

effects affect LODA. In order to test the presence of

epistasis, the influence of additive QTL on LOD score

needs to be removed, and another alternative hypothesis

HAA is needed for this purpose, i.e.,

HAA:l1 - l2 - l3 + l4 = 0, or aajk = 0.

The difference in ML between HAA and HA represents

the net contribution from epistatic effect. The ML esti-

mates under HAA was calculated by the conditional

maximum of LA. Let LAA = LA - k (l1 - l2 - l3 + l4),

where k is the Lagrange multiplier. In the EM algorithm,

the calculation of posterior probabilities was the same as

previous one. In the M-step, the five parameters were

updated as follows,

ðkr2Þð0Þ ¼
Xn

i¼1

w
ð0Þ
i1 Dyi

,
Xn

i¼1

w
ð0Þ
i1 �

Xn

i¼1

w
ð0Þ
i2 Dyi

,
Xn

i¼1

w
ð0Þ
i2

"

�
Xn

i¼1

w
ð0Þ
i3 Dyi

,
Xn

i¼1

w
ð0Þ
i3 þ

Xn

i¼1

w
ð0Þ
i4 Dyi

,
Xn

i¼1

w
ð0Þ
i4

#

,
X4

k¼1

1

,
Xn

i¼1

w
ð0Þ
ik

" #
;

lð1Þ1 ¼
Xn

i¼1

w
ð0Þ
i1 Dyi � ðkr2Þð0Þ

" #
=
Xn

i¼1

w
ð0Þ
i1 ;

lð1Þ2 ¼
Xn

i¼1

w
ð0Þ
i2 Dyi þ ðkr2Þð0Þ

" #
=
Xn

i¼1

w
ð0Þ
i2 ;

lð1Þ3 ¼
Xn

i¼1

w
ð0Þ
i3 Dyi þ ðkr2Þð0Þ

" #
=
Xn

i¼1

w
ð0Þ
i3 ; and

lð1Þ4 ¼
Xn

i¼1

w
ð0Þ
i4 Dyi � ðkr2Þð0Þ

" #
=
Xn

i¼1

w
ð0Þ
i4 :

The LOD score (denoted by LODAA) calculated by

LA - LAA indicates whether there is a significant

interaction at the two testing positions. It is worth noting

that the EM algorithms described above have a fast

convergence speed. The precision approaches 10-6 within

at most 10 iterations for any testing positions.

Calculation of genetic variance under linkage

and digenic epistasis

The theoretical additive variance of the genetic value G in

model (1) is,

VA ¼ Var
Xm

j¼1

ajgj

 !
¼
Xm

j;k¼1

Covðgj; gkÞajak

¼
Xm

j;k¼1

ð1� 2rjkÞajak; ð8Þ

where rjk is the recombinant frequency between the jth and

kth QTL. The theoretical epistatic variance in model (1) is,

VI ¼ Varð
X

j\k

aajkgjgkÞ

¼
X

j\k;l\m

Covðgjgk; glgmÞaajkaalm

¼
X

j\k;l\m

ð1� 2rjlÞð1� 2rkmÞ � ð1� 2rjkÞð1� 2rlmÞ
� �

� aajkaalm; ð9Þ

where rjk, rjl, rkm and rlm are the recombinant frequencies

between the jth and kth QTL, between the jth and lth QTL,

between the kth and mth QTL, and between the lth and mth

QTL, respectively. It can be proved that Cov(gj gk, gl gm)

= 0 in equation (9) if l C k and m B j. Equations (8) and (9)

can be used to evaluate the relative importance of epistatic

variance for any defined genetic models containing the

additive effects and digenic epistasis or after a QTL map-

ping study.

Genetic models used in simulation studies

Three hypothetical genomes were used in our simulation

studies. For consistency, the additive effect is defined as

half of the difference between two QTL genotypes in this

study, i.e., QQ and Qq in B1 (F1 9 P1), Qq and qq in B2

(F1 9 P2), and QQ and qq in DH or recombination inbred

lines (RIL).

The first genome consisted of six chromosomes, each of

150 cM in length and with 16 evenly distributed markers.

Ten predefined QTL similar to those in Zeng (1994)

(represented by QZ1–QZ10; Table 2) were assumed to

contribute to the trait of interest. Three QTL were located

on each of the first three chromosomes, and one QTL on

the fourth chromosome. There was no QTL on chromo-

somes 5 and 6. The locations and genetic effects (additive

and epistatic effects) of the ten simulated QTL are shown

in Table 2. Under this QTL distribution, the theoretical

additive and epistatic variances were both equal to 4.67,

calculated using equations (8) and (9). Heritability in the
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broad sense for the trait of interest was set at 0.8. One

hundred backcross populations each of 200 individuals

were simulated.

The second genome consisted of three chromosomes,

each with 100 cM in length and 11 evenly distributed

markers. Three QTL (represented by QB1–QB3; for details

see Boer et al. 2002) contributed to the expression of a

quantitative trait of interest. QB1 is located at 35 cM on

chromosome 1, QB2 at 53 cM on chromosome 2, and

QB3 at 22 cM on chromosome 3. For this genome, we

considered two genetic models corresponding to Set I (VA

= 0.375, VI = 0.375 and H = 0.6) and Set III (VA = 0, VI

= 0.375 and H = 0.3) of Boer et al. (2002), respectively.

Considering that the indicator variable has value 0.5 for

homozygous marker type, and -0.5 for heterozygous

marker type in Boer et al. (2002), the additive and epistatic

effects used in our simulation study were respectively half

and quarter of those in Boer et al. (2002), so as to achieve

the same additive and epistatic variances. One hundred

backcross populations each of 200 individuals were simu-

lated for this genome.

The third genome consisted of four 100 cM chromo-

somes. Eleven markers on each chromosome were

positioned as shown at the numerical labels of the horizontal

axis of Fig. 3 in Yi et al. (2003). Seven QTL (represented by

QY1–QY7) with epistatic patterns controlled the expression

of a quantitative trait of interest, for details see Table 1 in Yi

et al. (2003). Similar to Yi et al. (2003), the residual vari-

ance r2
e was adjusted to 1, and one hundred backcross

populations each of 300 individuals were simulated.

For each simulated populations, the number of total

markers is far less than its population size. As a result, in

the first stage of stepwise regression the largest P value for

entering variables (PIN1) was set at 0.05 and the smallest

P value for removing variables (POUT1) was twice of

PIN1, which is normally used in most stepwise regressions.

In the second stage, considering the increasing speed of

regression variables PIN was set as the square of PIN1, i.e.,

PIN2 = PIN1
2 = 0.0025, and POUT2 was twice of PIN2.

LOD score and effect estimation in simulation

For calculating LOD score and QTL effect in a simulation

study, a confidence interval for each predefined QTL is

normally specified, and then simulation runs that have

significant higher peaks along the LOD profile in the con-

fidence interval are counted. In this case, the QTL effects

are normally over-estimated. Unbiased estimation can be

achieved if all runs with peaks in the confidence interval are

counted, no matter whether the peaks are higher than the

LOD threshold (Zeng 1994; Li et al. 2007). Similar meth-

odology can be adopted for epistasis mapping, i.e., the

power analysis is conducted based on the predefined two

dimensional confidence interval for each interacting QTL.

For simplicity, the LOD score and QTL effect were cal-

culated for each scanned chromosomal position by

averaging the 100 simulation runs. It is expected that the

QTL effect is under-estimated since estimates from non-

significant LOD scores are also counted.

The barley DH population

One real population was used, which was derived from a

two-row barley (Hordeum vulgare L.) cross, Harrington

9 TR306, and consists of 145 random DH lines (Tinker

et al. 1996). A subset of 127 markers was used to build a

Table 2 Additive, and additive by additive epistatic effects of ten simulated QTL in genome 1

Chromosome 1 1 1 2 2 2 3 3 3 4

Position (cM) 16 48 108 3 43 77 33 68 129 26

QTL QZ1 QZ2 QZ3 QZ4 QZ5 QZ6 QZ7 QZ8 QZ9 QZ10

QZ1 0.00

QZ2 0.51

QZ3 0.40

QZ4 0.70

QZ5 -0.56 -0.84

QZ6 -0.86

QZ7 -0.90 0.00

QZ8 1.10

QZ9 -0.77 1.27 0.60

QZ10 0.98 -0.64 0.53

Both additive variance (VA) and interaction variance (VI) were equal to 4.67. The error variance (Ve) was calculated by Ve = (VA + VI)(1 - H)/H,

where H is heritability in the broad sense. H was set to 0.8 in our simulation study, so the error variance was 2.34. There are totally six digenic

epistasis, i.e., QZ1 9 QZ7, QZ1 9 QZ10, QZ2 9 QZ5, QZ4 9 QZ9, QZ5 9 QZ10 and QZ7 9 QZ9
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base map with relatively uniform coverage. Data for seven

agronomic traits were collected in 1992 and/or 1993 at 17

locations, and the average kernel weight (KWT) across 25

environments was used as the phenotypic data for QTL

mapping in this study. The average KWT was 38.7 mg for

Harrington, and 45.0 mg for TR306. The minimum, mean

and maximum KWT of the 146 DH were 35.8, 42.0, and

48.1 mg, respectively.

Results

Simulation results from genome 1

As previously indicated, both additive and epistasis infor-

mation were contained in LODA. Clear signs can be seen in

the LOD contour profile when additive or epistatic effect or

both effects were present (Fig. 1A). Genome regions with

additive QTL showed clear light bands on both axes in

Fig. 1A. The LOD score shown in Fig. 1B has excluded the

influence of additive effect, and clearly indicates the six

predefined epistatic QTL. The LOD scores at the other

positions are close to 0. For QTL with additive effect, the

LOD score was significantly higher at the QTL position,

such as QZ8, QZ6, QZ5, QZ9, QZ4 and QZ10. The additive

effects of QZ2 and QZ3 cannot be clearly seen due to their

relatively small effects (Table 2, Fig. 1A). QZ1 and QZ7 do

not have any additive effects, and therefore the LOD scores

at these two positions were close to zero (Fig. 1A).

QZ6 and QZ8 showed significant additive effects in both

one- and two-dimensional LOD profiles (Fig. 1A). But

there was no clear signs in Fig. 1B indicating their signifi-

cant interactions with other QTL. Therefore, QZ6 and QZ8

can be viewed as QTL with significant additive effects but

no significant epistatic effects with other QTL. The inter-

actions of QZ5 9 QZ10 and QZ4 9 QZ9 can be clearly

seen in Fig. 1B. The high LOD scores at these QTL posi-

tions indicated they have significant additive effects

(Fig. 1A). Thus, QZ4, QZ5, QZ9, and QZ10 have both

additive and epistatic effects. The two-dimensional LOD

profile in Fig. 1B showed the presence of interaction

QZ2 9 QZ5, but the LOD profile in Fig. 1A only indicated

the presence of additive effect of QZ5, explaining 6.05% of

the phenotypic variance (PVE; Table 3). No additive effect

was evident for QZ2 due to its relatively small effect

(PVE=2.23%; Table 3). There were clearly signs in Fig. 1B

for interactions of QZ1 9 QZ10 and QZ7 9 QZ9. But in

both one- and two-dimensional LOD profiles (Fig. 1A),

clear peaks only appeared at chromosomal regions around

QZ9 and QZ10, since the additive effects of QZ1 and QZ7

were set at zero. In these two interactions, only one QTL has

additive effect. For interaction of QZ1 9 QZ7, both QTL

have no additive effects (Table 2). The LOD profile in

Fig. 1B demonstrated the existence of this interaction

(LODAA=6.16), but no additive effects at the chromosomal

regions around QZ1 and QZ7 were detected from one-

dimensional scanning (Fig. 1A).

There is a trend that QTL with larger additive effect

results in higher LOD score (Table 3). However, this was

not always the case, especially when multiple QTL were

linked. For example, QZ4 has a larger effect than QZ9 but

lower LOD score than QZ9 (Table 3). QZ4 is linked with

QZ5 in the repulsion phase, while QZ9 is linked with QZ8

in the coupling phase (Table 2). Therefore, QTL linked in

coupling with the target QTL may increase the detection

efficiency of the target QTL. Similar trend can be seen for

epistasis (Table 3). QZ7 9 QZ9 explains 13.82% of the

phenotypic variation and the LOD score at this position

reaches 13.90. QZ2 9 QZ5 explains 2.69% of the pheno-

typic variation and the LOD score at this position reaches

2.50. Thus, it is expected that QZ7 9 QZ9 can be more

easily detected than QZ2 9 QZ5.

The estimation of epistatic effects were close to zero in

most genomic regions in the effect profile except around

the six predefined interactions (Fig. 2).The epistatic effects

were consistently under-estimated since they were esti-

mated by the mean effect across all simulation runs

(Fig. 2). Additive effects were also under-estimated. For

example, the additive effect of QZ2 was estimated as 0.34

in one-dimensional additive effect profile in Fig. 2, while

the true effect was 0.51 (Table 2). The true effects of QZ6

and QZ8 were -0.86 and 1.10, while the mean effects

across 100 simulation runs were -0.82 and 1.02, respec-

tively. Unbiased estimation could be achieved for additive

QTL effects if all peaks in a predefined confidence interval

were counted (Li et al. 2007). We expect that unbiased

estimation of epistatic QTL effects can be also achieved in

the same manner. It should be noted that the directions of

all epistatic effects were correctly detected (Fig. 2).

Simulation results from genome 2

The ICIM achieved satisfying results for both additive and

epistasis mapping under genome 2. Three peaks appeared

around the predefined interacting QTL for Set I (Fig. 3A).

The mean LODAA were high around the three interactions,

Fig. 1 Two-dimensional average LOD contour profiles testing the

significance of additive and epistasis (a), and epistasis only (b) under

genome 1 (Table 2). The number of simulation runs is 100. The one-

dimensional profile on each axis is the average LOD score testing the

significance of additive effects. The size and direction of each arrow

approximately represent the effect size and direction of the pointed

QTL, respectively. QTL without arrows have no additive effects.

Predefined digenic epistasis were indicated by text boxes. LOD score

testing the significance of either additive and epistasis (a), or epistasis

only (b) at the position of each network was shown in each box

c
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but close to zero in other regions (Fig. 3B). In the two-

dimensional LOD profile (Fig. 3A), high LOD score can be

seen at the position of QB3 due to its large additive effect.

Since the additive effects of QB1 and QB2 were only half

of the QB3 effect, the LOD scores at the positions of QB1

and QB2 in Fig. 3A were low, which was consistent with

the results from additive mapping (see the one-dimensional

LOD profile on the axes of Fig. 3A, B). Since the three

QTL in genome 2 are not linked, the additive effect was

less under-estimated in genome 2 compared with genome 1

(Figs. 2, 3C). The epistatic effects were under-estimated,

as expected (Fig. 3C).

For Set III, the three defined QTL have no additive

effects. In this case, LODA was only affected by epistatic

effect (Fig. 3D). Therefore, both Fig. 3D and E indicate the

three defined interactions. The additive mapping results

also indicate there is no significant additive QTL along the

genome (see the one-dimensional LOD profile on the axes

of Fig. 3D, E). These results suggest that epistasis has little

influence on additive QTL mapping of ICIM, and vice

versa. The mean epistatic effects for the three identified

interactions were -0.43, -0.18 and 0.17 for QB1 9 QB2,

QB1 9 QB3, and QB2 9 QB3, respectively, which were

all under-estimated (Fig. 3F).

Simulation results from genome 3

Similar results to the first two genomes were achieved for

genome 3 (Fig. 4). Three pairs of epistatic QTL were
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Fig. 2 Average epistatic effect

profile for genome 1. The

number of simulation runs is

100. The one-dimensional

profile on each axis is the

average additive effect. The size

and direction of each arrow

approximately represent the

effect size and direction of the

pointed QTL, respectively. QTL

without arrows have no additive

effects. Predefined digenic

epistasis were indicated by text
boxes. Estimated additive by

additive epistatic effect was

shown in each box. True

epistatic effect was given in

parentheses

Table 3 Percentage of phenotypic variance explained (PVE) by the additive effect of individual QTL and the epistatic effect of digenic

interacting QTL, and the corresponding mean LOD score across the 100 simulation runs

Additive QTL QZ1 QZ2 QZ3 QZ4 QZ5 QZ6 QZ7 QZ8 QZ9 QZ10

PVE (%) 0.00 2.23 1.37 4.20 6.05 6.34 0.00 10.37 3.09 2.41

LOD in additive mapping 0.24 1.41 1.04 2.63 4.15 4.75 0.33 6.82 3.24 1.65

Interacting QTL QZ1 9 QZ7 QZ1 9 QZ10 QZ2 9 QZ5 QZ4 9 QZ9 QZ5 9 QZ10 QZ7 9 QZ9

PVE (%) 6.94 8.23 2.69 5.08 3.51 13.82

LODAA 6.16 8.42 2.50 6.10 2.55 13.90
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clearly identified through the two-dimensional scanning

(Fig. 4B). Similar LOD scores were obtained for all the

three pairs (Fig. 4B), since they explained the same amount

of phenotypic variation. The high LODAA value for the

identified interactions (11.23, 13.76, and 14.90 for

QY1 9 QY2, QY3 9 QY4, and QY5 9 QY6, respec-

tively) indicated high detection power (Fig. 4B). The three

interacting chromosomal regions showed different LOD

scores in Fig. 4A due to their different additive effects. All

the four additive QTL were clearly identified from additive
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Fig. 3 Two-dimensional average LOD contour profiles testing the

significance of additive and epistasis (a and d), and epistatic only (b
and e), and average epistatic effect profile (c and f) for genome 2. The

number of simulation runs is 100. On the coordinate axes of the two-

dimensional average LOD contour profiles are the one-dimensional

average LOD profiles testing the significance of additive effects. On

the coordinate axes of the two-dimensional average epistatic effect

profiles are the one-dimensional average additive effect profiles. The

size and direction of each arrow approximately represent the effect

size and direction of the pointed QTL, respectively. QTL without

arrows have no additive effects. Predefined digenic epistasis were

indicated by text boxes. LOD score testing the significance of either

additive and epistasis (a and d) or epistasis (b and e), or estimated

additive-by-additive epistatic effect (c and f) was shown in each box.

True epistatic effect was given in parentheses
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mapping and the estimated additive effects were almost

identical to the predefined effects (see the one-dimensional

additive effect profile on the axes of Fig. 4C). Similar to

genomes 1 and 2, the effects of the three identified inter-

actions were under-estimated (Fig. 4C).

Comparison of ICIM with MIM using simulated

populations

To demonstrate the efficiency of ICIM in QTL mapping

compared with other methods, we used one mapping

population from the first simulation run in genome 1 as an

example (Fig. 5). For this population, MIM detected one

QTL on chromosome 1, two each on chromosomes 2 and 3,

and one each on chromosomes 4 and 5 (Fig. 5A). LOD

scores from MIM were much lower than those from ICIM.

ICIM detected six QTL with LOD scores more than 2.0. In

addition, the estimated additive effects from MIM were

more biased than those from ICIM (Fig. 5B, D; Table 2).

MIM reported one interaction at 80 cM of chromosome 1

and 20 cM of chromosome 4. In comparison, five inter-

actions (i.e., epi1 for QZ1 9 QZ10, epi2 for QZ1 9 QZ7,

epi3 for QZ2 9 QZ5, epi4 for QZ5 9 QZ10, and epi5 for

QZ7 9 QZ9) were identified with LOD scores more than

3.0 by ICIM (Fig. 5E, F). The positions of interacting QTL

were biased in both ICIM and MIM (Fig. 5E; Table 2), but

the epistatic effects were nearly unbiased in ICIM (Fig. 5F;

Table 2). A couple of false interacting QTL appeared on

the LOD contour profile of Fig. 5E, but they can be avoi-

ded by increasing the LOD threshold.

When the two QTL having no additive effects are

interacting, epistasis can be significant (Carlborg and Haley

2004). Such epistasis is difficult to detect using MIM and

other one-dimensional epistatic mapping methods. In

comparison, ICIM can identify epistatic QTL no matter

whether the two interacting QTL have any additive effects.

For example, QZ1 and QZ7 defined in genome 1 have no

additive effects, but the additive by additive epistatic effect

is -0.90 (Table 2) which explains 6.94% of phenotypic

variation (Table 3). In our two-dimensional scanning, the

average LODAA corresponding to these two QTL reached

6.16 (Table 3), which indicates they can be easily identi-

fied. For the simulated population shown in Fig. 5, ICIM

reported a LOD score of 9.7 at this interaction, but MIM

failed to detect this epistasis.

Fig. 4 Two-dimensional average LOD contour profiles testing the

significance of additive and epistasis (a) and epistasis only (b), and

average epistatic effect profile (c) for genome 3. The number of

simulation runs is 100. On the coordinate axes of the two-dimensional

average LOD contour profiles are the one-dimension average LOD

profiles testing the significance of the additive effects. On the

coordinate axes of the two-dimensional average epistatic effect

profiles are the one-dimensional average additive effect profiles. The

size and direction of each arrow approximately represent the effect

size and direction of the pointed QTL, respectively. QTL without

arrows have no additive effects. Predefined digenic epistasis are

indicated by text boxes. LOD score testing the significance of either

additive and epistasis (A) or epistasis (B), or estimated additive by

additive epistatic effect (C) was shown in each box. True epistatic

effect was given in parentheses
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Using simulated populations and Set III from the second

genome we found that MIM only detected some false

positive QTL and failed to identify any interactions. In

comparison, ICIM was able to detect these interacting QTL

with reasonable powers (Fig. 3D, E). Theoretically, MIM

should be the optimal method in terms of accuracy. ICIM

only improves the computational efficiency (less comput-

ing time). The less efficiency in terms of accuracy of QTL

detection for MIM may be due to convergence to a local

optimum rather than global optimum, and the implemen-

tation algorithm used in MIM.

Mapping results for the barley DH population

Since the number of total markers and the size of the barley

population are fairly comparable, stricter probabilities

should be adopted to avoid over-fitting of marker variables

in the stepwise regression. When PIN1 was set at 0.01 and

POUT1 was twice of PIN1, nine additive QTL for KWT

(denoted by qKWT1 to qKWT9) were identified to be

distributed on five of the seven barley chromosomes by

ICIM under the LOD threshold of 2.5 (Table 4), eight of

which could be seen from the LOD profile in Tinker et al.

(1996). qKWT7 (explaining 38.37% of the phenotypic

variance (PVE)) located at 5.0 cM on chromosome 5H and

qKWT9 (PVE=17.20%) located at 95.0 cM on chromo-

some 7H are the two largest additive QTL (Table 4).

Different probability levels for PIN1 and POUT1 had some

effects on smaller QTL such as qKWT4 on 3H, and

qKWT6 on 4H. But large effect QTL such as qKWT7,

qKWT8, and qKWT9 were less affected by the probability

levels (Fig. 6).

Some QTL in Table 4 were located more closely to

individual markers, such as qKWT3, qKWT4 and qKWT6,

while some QTL were located in the middle of the two
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Fig. 5 Additive and epistatic QTL mapping of MIM and ICIM using

one simulated backcross population of 200 individuals from the first

genome. The LOD score and additive effect profiles from MIM were

shown in a and b, and those from ICIM were shown in c and d. Two-

dimensional LOD score and epistatic effect contour profiles of ICIM

were shown in e and f. Significant QTL interactions were indicated by

text boxes in e and f, and red boxes indicated the interactions detected

by MIM, otherwise by ICIM
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flanking intervals, such as qKWT1, qKWT7 and qKWT9.

In the later case, both flanking marker variables will have

significant coefficients in the regression model. Assuming

each significant marker variables corresponding to one

QTL, therefore, it is understandable that Xu and Jia (2007)

reported 13 additive QTL for KWT using the same popu-

lation. Under PIN1=0.01 and POUT1 = 0.02, main effects

of significant marker variables in the regression model can

explain 80.76% of the phenotypic variance (Table 4),

which was higher than the heritability of KWT, i.e. 0.71

(Tinker et al. 1996). Thus, in this population additive

variation should be the major component of genetic

variation.

When PIN2 =0.001 and POUT2 = 0.002 were used in the

second stage stepwise regression, R2 was almost equal to 1

indicating the over-fitting of regression variables. To

demonstrate the effect of marker inclusion and exclusion

criteria in stepwise regression on digenic epistasis

detection, two stricter probability levels, i.e. PIN2 =0.0005

and POUT2 = 0.0010 (Fig. 7A, B), and PIN2 =0.0001 and

POUT2 = 0.0002 (Fig. 7C, D), were considered. As both

additive and epistatic effects contribute to LODA, the seven

largest additive QTL (i.e., qKWT2–qKWT5 and qKWT7–

qKWT9; Table 4) were clearly observed from the LODA

contour profiles (Fig. 7A, C). When the additive effects

were excluded from LODA, few interactions showed

LODAA over 3.0 (Fig. 7B, D), confirming the less impor-

tance of epistasis for KWT in the barley population.

Discussion

Model selection in ICIM

Two steps are involved in ICIM. In the first step, the best

regression model is selected, which properly identifies

Table 4 Nine additive QTL

identified by ICIM (PIN = 0.01,

POUT = 0.02) to control KWT

in the barley DH population

Marker ID is represented by the

barley chromosome name

followed by a number from 1 to

127

Chromosome Left marker ID

(marker name) QTL

name right marker ID

(marker name)

Marker or QTL

position (cM)

LOD

score

Additive

effect (mg)

PVE (%)

2H 2H19 (MWG520A) 74.3

qKWT1 83.0 4.60 0.39 3.13

2H20 (Pox) 90.1

2H 2H26 (ABC620) 130.9

qKWT2 140.0 7.23 -0.51 5.34

2H27 (MWG882) 142.1

2H 2H29 (ABG317) 195.4

qKWT3 201.0 5.59 0.43 3.77

2H30 (ABG609A) 201.7

3H 3H33 (ABC171) 0.0

qKWT4 1.0 4.39 -0.39 3.04

3H34 (CDO395) 5.7

3H 3H35 (ABG471) 17.2

qKWT5 22.0 7.41 0.51 5.33

3H36 (Ugp2) 25.2

4H 4H57 (MWG655C) 124.8

qKWT6 125.0 4.12 -0.37 2.73

4H58 (ABG366) 140.1

5H 5H62 (Act8B) 3.8

qKWT7 5.0 34.28 -1.37 38.37

5H63 (MWG502) 7.0

7H 7H108 (iPgd1A) 3.4

qKWT8 4.0 8.27 -0.55 6.07

7H109 (BCD129) 7.6

7H 7H118 (MWG626) 92.6

qKWT9 95.0 19.81 -0.92 17.20

7H119 (VAtp57A) 97.7

Total phenotypic variation explained by additive effects (%)

(represented by R2 in the regression of phenotype on markers)

80.76
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markers and marker pairs explaining additive and epistatic

variations. In the second step, interval mapping approach is

applied to the phenotypic values, adjusted by using the

regression model selected in the first step, to locate QTL in

marker intervals and estimate their effects. The use of

adjusted phenotypic values for interval mapping can be

viewed as using cofactors to control genetic background

effect, an idea similar to the conventional CIM (Zeng

1994). The separation of cofactor selection using stepwise

regression and the interval mapping using ML method

effectively removes the requirement of deciding how many

terms (main effects and epistasis) should be included in the

model, which is the most difficult issue faced by the MIM

proposed by Kao et al. (1999). It also avoids the choice of

‘‘the effective dimension’’ (i.e., number of QTL) for epi-

static interactions, which is required by the one-

dimensional genome searches approach developed by Boer

et al. (2002). In addition, the computation speed is dra-

matically increased since cofactor is selected only once for

the entire search. The interval mapping in ICIM is rela-

tively straightforward, which involves the use of ECM to

calculate LOD scores along the genome one- or two-

dimensionally.

Clearly, the result of ICIM depends on the identification

of an appropriate regression model in the first step. Choice

of variables for multiple regression is a typical model

selection issue. The number of possible models is huge due

to the high number of markers and marker pairs. In this

article the stepwise regression technique was applied and

satisfactory results were obtained. Treating QTL mapping

as model selection problem and the use of model selection

criteria to identify the best model have been investigated

by many authors (Piepho and Gauch 2001; Broman and

Speed 2002; Bogdan et al. 2004; Baierl et al. 2006). The

Schwarz Bayesian information criterion was modified by

Bogdan et al. (2004) and Baierl et al. (2006) to suit the

identification of main effect and interactive QTL using

forward selection procedure for the backcross and inter-

cross design, respectively. However, these studies made the

assumption that QTL are sitting on the markers, which is

not likely to be true when marker density is not very high.

It will be worthy investigating whether the use of common

selection criteria and their modified versions in the first

step of ICIM can improve its performance significantly.

The influence of marker inclusion and exclusion

criteria in stepwise regression

The largest P value for entering variables and the smallest

P value for removing variables are required for the step-

wise regression when using ICIM. This is where the

subjectivity comes into play. We believe that this is much

easier than cofactor selection in traditional CIM and model

selection in MIM.

It can be proved that for any marker variables i, j and k

Cov(xi, xj xk) = 0, indicating the effects of markers and

marker-pair multiplications are independent under the

assumption of large sample size. Therefore, we adopted a

two-stage regression strategy to estimate the parameters in

model (5). In the first stage, only individual markers were

considered in stepwise regression. The largest P value for
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Fig. 6 Mapping results from ICIM for additive QTL affecting kernel

weight (KWT) in the barley population consisting of 145 DH lines.

Three probabilities for entering variables and removing variables

were considered (i.e. PIN = 0.001, 0.01, 0.05 and POUT = 0.002,

0.02, 0.10, respectively). The scanning step is 1 cM and 1–7H

represent the seven barley chromosomes
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entering variables (PIN1) and the smallest P value for

removing variables (POUT1) are generally set to 0.05 and

0.10, respectively. More strict probability levels, such as

PIN1=0.01 and POUT1=0.02 can be used to further reduce

the false positives without sufficiently changing the

detection power (Li et al. 2007). The regression residuals

from the first stage were used to regress on all marker-pair

multiplications in the second stage. Due to the large

amount of variables in this stage, much stricter probability

levels for entering variables (PIN2) and removing variables

(POUT2) should be used to avoid over-fitting.

Trait heritability may be used to justify the used prob-

ability levels. From model (5), the R2 after fitting all

marker variables and marker pairs should approximate the

proportion of phenotypic variation explained by additive

and digenic interacting QTL, that is, the broad sense her-

itability. From genetic studies and breeding practice, the

range of heritabilities of most quantitative traits is roughly

known (Falconer and Mackay 1996). Therefore, an R2

higher than heritability may suggest stricter probability

levels should be applied. In comparison, an R2 lower than

heritability may suggest less stricter probability levels

should be applied.

The LOD threshold for statistical inference in ICIM

Many factors affect the LOD score in QTL mapping,

among which are population size, number and distribution

of markers and putative QTL, QTL effects and error

Fig. 7 Two-dimensional scanning from ICIM testing the significance

of additive and epistasis (a and c), and epistasis only (b and d)

affecting kernel weight (KWT) in the barley population consisting of

145 DH lines. Two probabilities for entering variables and removing

variables in the second stage of stepwise regression were considered

(PIN = 0.0005 and POUT = 0.0010 for a and b, and PIN = 0.0001

and POUT = 0.0002 for c and d)
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variance, etc. Similar to ICIM for additive mapping (Li

et al. 2007), permutation tests can also be conducted in the

case of epistatic mapping to find the LOD score distribu-

tion. ICIM requires about 15 min in a personal computer

(1.83 GHz CPU) to complete one run of additive and

epistatic mapping (scanning step = 1 cM) for a backcross

population from genome 1. Therefore, extensive comput-

ing time is required to conduct a large number of

permutation tests, say 1,000 times, even if there is no

theoretical restrict for conducting permutation tests in

ICIM epsitatic mapping.

In practice, the choice of LOD threshold depends on

research purpose, that is to say, what size of QTL need to

be identified. QZ4, QZ5, QZ6, QZ8 and QZ9 explain more

than 3.00% of phenotypic variation, and have average LOD

scores 2.63, 4.15, 4.75, 6.82, and 3.24, respectively

(Table 3). If the LOD threshold of 2.0 is applied, these

QTL can be identified with relatively high powers. In

comparison, if the LOD threshold of 3.0 is applied, the

power for detecting QTL4 would be lower. The same is

true for interacting QTL. Therefore, if one wants to detect

additive or epistatic QTL with smaller effects, say explains

less than 3% of phenotypic variation, a lower LOD

threshold has to be used at the expense of a likely higher

risk of false positives. From our experience, the normally

accepted LOD threshold from 2.0 to 3.0 can be used for

ICIM additive mapping. Similar or a little higher LOD

threshold can be used for ICIM epistatic mapping, such as

2.5 to 3.5. These LOD thresholds will make sure the

identified QTL are likely true QTL, but those explaining

less than 3% of phenotypic variation may be ignored.

ICIM is an efficient mapping method

for both additive and epistasis

The ICIM provides intuitive statistics for testing additive

and epistasis, and can be used for experimental populations

derived from two inbred parental lines. When mapping

digenic epistasis, ICIM gives two LOD scores, i.e., LODA

and LODAA. LODA contains the information of both

additive and epistasis of QTL at the two testing positions,

while LODAA contains the information of epistasis only.

LODAA was the statistic excluding the influence of additive

effects in LODA, so LODAA is lower than LODA (Figs. 1A,

B, 3A, B, D, E, 4A, B, 7A, B, C, D). As previously shown,

the additive mapping results from one-dimensional LOD

profile (see profiles on the axes of Figs. 1A, B, 3A ,B, D, E

and 4A ,B) and from two-dimensional LODA profile

(Figs. 1A, 3A, D and 4A) are consistent. The predefined

epistasis were well demonstrated in the two-dimensional

LODAA profile (Figs. 1B, 3B, E, 4B). Therefore, we rec-

ommend that both of the one-dimensional LOD profile and

the two-dimensional LODAA profile be used. The additive

QTL can be deduced from the one-dimensional scanning,

and the digenic epistatic QTL from the two-dimensional

scanning.

Genetic variation due to the identified QTL with addi-

tive effects can be calculated from equation (8), which can

be used to determine whether the two-dimensional scan-

ning is necessary. Generally, if the identified additive QTL

have explained most of the genotypic variation, i.e., the

proportion of the phenotypic variation explained is close to

heritability in the broad sense, epistasis is less important

and the two-dimensional scanning for epistasis may not be

necessary. Otherwise, the two-dimensional scanning

should be conducted to detect epistatic QTL. Genetic

variation due to the identified interacting QTL can be

calculated from equation (9). If the identified additive QTL

and digenic epsistasis failed to explain most of the geno-

typic variation, higher order of epistasis must exist. Higher

order of epistasis is less likely to be identified from a

standard mapping population such as backcross or recom-

bination inbred lines, but may be detected in other

populations such as chromosome segment substitute lines

(Nadeau et al. 2000; Carlborg et al. 2006).

We have used mapping populations with two genotypes

to illustrate our algorithm in this paper. The extension of

ICIM to F2 with three genotypes may need additional work,

as more genetic parameters such as dominance effects and

various epistatic effects involving dominance have to be

added to model (1). But in theory, there is no limit to apply

ICIM to F2 populations. The software implementing ICIM

additive and epistasis mapping called QTL IciMapping was

written in Fortran 90/95, and is freely available from

http://www.isbreeding.net. The simulated and real popu-

lations used in this study are also available from this

website.
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