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Abstract A joint segregation analysis of a genetic sys-
tem and the effects of QTLs based on the six popula-
tions P

1
, F

1
, P

2
, B

1
, B

2
and F

2
is proposed in this

paper. The major steps were as follows. Firstly, under
the supposition that the segregating population was
composed of component distributions controlled by
a major gene(s) and modified by both polygenes and
environments, four groups and 17 types of genetic
models, including a one major-gene model, a two ma-
jor-gene model, a polygene model, and a mixed one-
major gene and polygene model, were set up. Secondly,
the joint maximum-likelihood function was construc-
ted from the six generations so as to estimate the
parameters of component distributions through an EM
algorithm. Thirdly, the best-fitting genetic model was
chosen according to Akaike’s information criterion,
a likelihood-ratio test, and tests for goodness of fit.
Fourthly, the related genetic parameters, including
gene effects, as well as the genetic variances of major
genes and polygenes, were obtained from the estimates
of component distributions. Finally, the individuals in
segregating populations were classified into their
major-gene genotypes according to their posterior
probabilities. An example of the genetic analysis of
plant height of a rice cross between Nanjing No. 6 and
Guangcong was used to illustrate the above procedure.
The method was especially appropriate to those crops
with easy to obtain hybrid seeds.
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Introduction

The genetics of a quantitative trait can often be
deduced from the statistical analysis of several seg-
regating populations (Mather and Jinks 1982). The
fundamental assumption of classical quantitative gen-
etics is the polygene system. But a number of genetic
phenomena in plant and animal breeding have in-
dicated that the effects of individual QTLs in the sys-
tem may differ from each other, and change from
environment to environment. Thus, there may be one
or a few genes in the QTL system with relatively large
genetic effects, referred to as major genes. Those with
relatively small effects are called minor genes (or poly-
genes). Therefore, the inheritance system of a quantitat-
ive trait might consist both of a few major genes and
a number of polygenes. This genetic model has wide
representability and is called mixed the major-gene and
polygene inheritance model (or mixed-inheritance
model, or mixed-genetic model, in brief ). Quite a num-
ber of methods have been studied by various re-
searchers to analyze the mixed-inheritance model in
human and animal populations (Elston and Stewart
1973; Morton and MacLean 1974; Elston 1984;
Famula 1986; Hoeschele 1988; Knott et al. 1991; Guo
and Thompson 1992; Fernando et al. 1994; Shoukri
and McLachlan 1994; Janss et al. 1995). But these
methods are not immediately available for the genetic
analysis of plant quantitative traits due to the different
mating systems and different breeding objectives in-
volved in plant and animal breeding.

The production of a saturated genetic map by mo-
lecular biology, coupled with the genetic analysis of



quantitative traits, has led to the method of QTL map-
ping, which provides the possibility for determining the
inheritance of individual QTLs. But, because of the
high cost of the molecular technique, population and
sample-size restriction, and the interference of errors,
such a QTL technique has not yet become practicable
in breeding. Further efforts have, therefore, been under-
taken for the improvement of precision in detecting and
locating QTLs, as well as estimating their effects. Using
a statistical approach, based on the literature cited,
Wang (1996) and Wang and Gai (1997) developed the
segregation-analysis method to identify the mixed-
inheritance model of QTLs and to estimate related
genetic parameters; this takes large advantage of the
sample size available for plant quantitative traits. The
method for individual segregating populations, such as
F
2
, backcrosses and F

2 :3
, has been developed and

reported. Based on this, the joint analysis of multiple
generations for the five populations P

1
, F

1
, P

2
, F

2
and

F
2 :3

and for the six populations P
1
, F

1
, P

2
, B

1
, B

2
and

F
2

were developed separately, with respect to the de-
gree of difficulty in obtaining hybrid seeds. The latter
approach is the subject of the present paper.

The joint segregation analysis method of the six populations

Basic assumptions and genetic models

Four kinds of genetic models, i.e. one major-gene inheritance, two
major-gene inheritance, polygene inheritance, and mixed one
major-gene and polygene inheritance, were considered. It was as-
sumed that each sample observation was an individual from one of
the six populations: the two homozygous parents (denoted by
P
1

and P
2
), the F

1
, the two backcrosses (denoted by B

1
and B

2
), and

the F
2
. Some characteristics of the related populations are listed in

Table 1. The underlying assumptions were as follows: diploid
nuclear inheritance with no maternal or cytoplasmic effects, no
interaction or linkage between major genes and polygenes, and no
selection; the genetic effect of polygenes and the effect of the environ-
ment in any segregating population followed a normal distribution,
and variances within the P

1
, P

2
and F

1
populations were equal.

Based on these assumptions, four groups and 17 types of genetic
models were established as listed in Table 2.

If the two parents differ at only one major locus for a specific
quantitative trait, then only three major genotypes are possible. Let
A-a represent the alleles of the locus, then the major genotypes for
the two parents and the F

1
will be AA, aa and Aa, respectively. The

genotypes for backcross B
1

is a 1 : 1 mixture of AA and Aa, for
B
2

a 1 : 1 mixture of Aa and aa, and for the F
2

a 1 : 2 : 1 mixture of
AA, Aa and aa. The general distribution forms of the six populations
can be written as:
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The populations of P
1
, P

2
and F

1
are all distributed as single normal

curves; B
1

and B
2

populations are all 1 : 1 mixtures of two normal

curves; and the F
2

population is distributed as a 1 : 2 : 1 mixture of
three normal distributions. Altogether there are ten component
distributions in the six populations. When the genetic model is the
mixed one major-gene and polygenes, and all possible genetic effects
exist, the ten components are different. Under some specific cases,
some components may be the same. For example, when only the
major gene exists without polygenes (A-group model), the compo-
nents will have the following relationships:

N(k
1
, p2)"N(k

41
, p2

4
)"N(k

61
, p2

6
),

N(k
2
, p2)"N(k

42
, p2

4
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6
),

N(k
3
, p2)"N(k

52
, p2

5
)"N(k

63
, p2

6
).

In the situation with two major-genes without polygenes, there will
be nine component distributions contained in the six populations.
Under the polygenic-inheritance model, each of the six populations
is considered as a single normal distribution, and there are six
different components in the six populations. The genetic parameters
contained in each model are given in Table 2. In the present paper,
the mixed two major-genes and polygenes model and more complic-
ated models will not be included and are to be left for future papers
due to their complication.

Joint multiple-generation likelihood and an EM algorithm for
parameter estimation

The EM algorithm (Dempster et al. 1977; Wang and Gai 1997;
McLachlan 1988) was exploited to calculate the maximum-likeli-
hood estimates, and will be expounded here for model D. The main
principle for other models is almost the same. In the E-step, the
logarithm likelihood function of the complete data which are classi-
fied by Bayesian rules can be written as:

L
#
(')"C#& log f(X
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; k

1
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2
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3
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where the range of summations is over individuals and where f (X
1*
;

k
1
, p2) represents the density function of the normal distribution

N(k
1
, p2), and so on for the others. W

4*1
, W

4*2
, W

5*1
, W

5*2
, W

6*1
,

W
6*2

and W
6*3

are posterior probabilities of samples from B
1
, B

2
and

F
2
populations under the initial parameter values. In the M-step, the

maximum point of L
#
(') can be obtained for model D by computing

partial derivatives of L
#
(') for all parameters and letting derivatives

be zero. But for models D-1 through D-4, there are still some
constraints on the parameters. However, the Lagrange-multiplicator
(or j-multiplicator method) can be used in the maximisation step for
those models with constraints. According to the above representa-
tion, the procedure to obtain the maximum-likelihood estimates of
parameters can be summarized as follows:

(1) choose initial values of component parameters according to the
observations;
(2) compute posterior probabilities W

4*1
, W

4*2
, W

5*1
, W

5*2
, W

6*1
,

W
6*2

and W
6*3

, and therefore obtain the logarithm likelihood L
#
(')

(E-step) of the complete data;
(3) compute the maximum, or conditional maximum, of L

#
(') and

obtain the estimates of means and variances of the component
distributions (M-step);
(4) replace initial values with estimates from step (3) and then iterate
steps (2) and (3) until a previously selected precision is achieved.
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Table 1 The codes and
parameters of P

1
, F

1
, P

2
, B

1
,

B
2

and F
2

Generation Code Sample size Observation Mean Variance Distribution

P
1

1 n
1

X
1*

k
1

p2 N(k
1
, p2)

F
1

2 n
2

X
2*

k
2

p2 N(k
2
, p2)

P
2

3 n
3

X
3*

k
3

p2 N(k
3
, p2)

B
1

4 n
4

X
4*

k
4

p2
B1

Mixture of two or
more normal curves

B
2

5 n
5

X
5*

k
5

p2
B2

Mixture of two or
more normal curves

F
2

6 n
6

X
6*

k
6

p2
F2

Mixture of two or
more normal curves

Table 2 The number of component distributions and estimatable genetic parameters in various genetic models

Model group Code and implication of
model type

Number of
component
distributions

Number of
independent
parameters

First-order genetic
parameter

Second-order
parameter

One major gene A-1: additive and dominance 3 4 m, d, h p2
A-2: additive 3 3 m, d (h"0) p2
A-3: dominance 3 3 m, d (h"d) p2
A-4: negative dominance 3 3 m, d (h"!d) p2

Two major genes B-1: additive, dominance and
epistasis

9 10 m, d
!
, d

"
, h

!
, h

"
,

i, j
!"

, j
"!

, l
p2

B-2: additive and dominance 9 6 m, d
!
, d

"
, h

!
, h

"
p2

B-3: additive 9 4 m, d
!
, d

"
(h

!
"h

"
"0) p2

B-4: equal additive 9 3 m, d ("d
!
"d

"
, h

!
"h

"
"0) p2

B-5: dominance 9 4 m, d
!
("h

!
), d

"
("h

")
p2

B-6: equal dominance 9 3 m, d ("d
!
"d

"
"h

!
"h

"
) p2

Polygene C: additive, dominance and
epistasis

6 10 m, [d], [h], [i], [ j], [l] p2
4
, p2

5
, p2

6
, p2

C-1: additive and dominance 6 7 m, [d], [h] p2
4
, p2

5
, p2

6
, p2

One major gene
plus polygenes

D: mixed one major-gene and
additive-dominance-epistasis
polygenes

10 14 m, d, h, [d], [h],
[i], [ j], [l]

p2
4
, p2

5
, p2

6
, p2

D-1: mixed one major-gene
and additive-dominance
polygenes

10 9 m, d, h, [d], [h] p2
4
, p2

5
, p2

6
, p2

D-2: mixed one additive major-
gene and additive-dominance
polygenes

10 8 m, d (h"0), [d], [h] p2
4
, p2

5
, p2

6
, p2

D-3: mixed one dominance
major-gene and additive-
dominance polygenes

10 8 m, d ("h), [d], [h] p2
4
, p2

5
, p2

6
, p2

D-4: mixed one negative
dominance major-gene and
additive-dominance polygenes

10 8 m, d ("!h), [d], [h] p2
4
, p2

5
, p2

6
, p2

Model selection by AIC and test of fitness

Any constraints on the parameters will automatically lower the
maximum likelihood. To cope with this effect, and in general to
allow for the fact that different hypotheses depend on different
numbers of unknown parameters, Akaike (1977) suggested that the
hypothesis maximizing the expected entropy should be selected as
the most suitable model. For this purpose, based on goodness-of-fit
and parsimony, the hypothesis that leads to the smallest Akaike’s
Information Criterion (AIC) will be chosen. The AIC was defined as
follows:

AIC"(!2) log(maximum likelihood)

#2 (number of independent parameters).

Elston (1984) proposed to select non-nested genetic models by
using AIC.

The likelihood-ratio test (LRT), utilizing the statistic j"
2 log(L

!
)-2 log(L

0
), is used to compare whether a restricted model

(H
0
) is compatible to the general model(H

!
), where L

!
and L

0
are the

maximum likelihoods under H
!
and H

0
, respectively. This difference

in j asymptotically approaches a s2 distribution with the degrees of
freedom equal to the difference in the number of independent para-
meters of each model.

After a genetic model is selected through AIC and/or LRT, it is
still of importance to determine the goodness-of-fit between the
expected values from the selected model and the observed values.
Given H

0
: F(x)"F

0
(x), when the n observations X

*
(i"12 n) are

transformed by the accumulated probability transformation
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[Y
*
"F

0
(X

*
)], n independent observations Y

*
(i"12 n) uniformly

distributed on the interval (0, 1) can be obtained when H
0

holds.
Consequently, the following three statistics can be used to test the
hypothesis H

0
.

U2
1
"12[&F(X

*
)!n/2]2/n&s2(1),

to test whether the mean of Y
*

is 1/2;

U2
2
"(45/4)[&F(X

*
)2!n/3]2/n&s2(1),

to test whether the second moment of Y
*
is 1/3;

U2
3
"180[&(F(X

*
)!0.5)2!n/12]2/n&s2(1),

to test whether the variance of Y
*
is 1/12.

Let F
n
(x) be the empirical distribution function, X

(1)
, X

(2)
,2 , X

(n)be the order-statistics, F
0
(x) be the expected distribution function

(population distribution derived from the selected genetic model),
the Smirnov statistic

n
W2 can be used to test H

0
: F

n
(x)"F

0
(x). The

distribution of
n
W2 does not depend on F

0
(X), so the test is com-

pletely distribution-free. The asymptotic distribution of
n
W2 is

reached remarkably rapidly, the exact distribution for n"3 being
close to it (Kendall and Stuart 1979).

Another important general test of goodness-of-fit is the Kol-
mogorov test. Like

n
W2, it is based on deviations of the sample

density function F
n
(x) from F

0
(x). The measure of deviation used is

very much simpler, being the maximum absolute difference between
F
n
(x) and F

0
(x), i.e.,

D
n
"Sup DF

n
(x)!F

0
(x) D.

The distribution of D
n

is completely distribution-free when
H

0
holds.

In the joint segregation analysis of the mixed genetic model, AIC
will be employed to determine which model group is most fitting,
LRT will be used to choose the simplest type within the model
group, and tests for goodness-of-fit will be used to determine
whether the selected model sufficiently explains the data. If, for
a particular genetic model, none of these five statistics are significant,
one can be reasonably sure that the data adequately fit the model.

Estimation of genetic parameters

Genetic parameters can be computed from the estimates of compon-
ent parameters in the corresponding model. Taking model D as an
example, the first-order genetic parameters can be calculated by least
squares from the following equations (Mather and Jinks 1982):

k
1
"m#d#[d]#[i];

k
2
"m#h#[h]#[l];

k
3
"m!d![d]#[i];

k
41

"m#d#(1/2)[d]#(1/2)[h]#(1/4)[i]#(1/4)[j]#(1/4)[l];

k
42

"m#h#(1/2)[d]#(1/2)[h]#(1/4)[i]#(1/4)[j]#(1/4)[l];

k
51

"m#h!(1/2)[d]#(1/2)[h]#(1/4)[i]!(1/4)[j]#(1/4)[l];

k
52

"m!d!(1/2)[d]#(1/2)[h]#(1/4)[i]!(1/4)[j]#(1/4)[l];

k
61
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k
62

"m#h#(1/2)[h]#(1/4)[l];

k
63

"m!d#(1/2)[h]#(1/4)[l],

where m is the population mean, d and h are the additive and
dominance effects of major genes respectively, and [d], [h], [i], [ j]
and [l] are additive, dominance, additive-additive, additive-domi-
nance and dominance-dominance epistasis effects, respectively. The
phenotypic variance (p2

1
) of B

1
, B

2
and F

2
can be directly calculated

from the observation data. p2 in the phenotypic variance of P
1
,

P
2

and F
1

can be regarded as the environmental variance (p2
%
) since

there is no genetic variation in each of the three populations; p2
4

is
the variance of component distribution in B

1
which consists of

polygenic variance (p2
1'

) and environmental variance (p2
%
). Thus

p2
1
"p2

.'
#p2

1'
#p2

%
and p2

4
"p2

1'
#p2

%
for the B

1
population.

Therefore, the major-gene variance p2
.'

and the polygenic variance
p2
1'

in B
1

can both be estimated, and the major-gene heritability
(h2

.'
) and polygenic heritability (h2

1'
) can also be estimated from

h2
.'

"p2
.'

/p2
1

and h2
1'
"p2

1'
/p2

1
. The principle is the same for calcu-

lating p2
.'

, p2
1'

, h2
.'

and h2
1'

in B
2

and F
2
.

Posterior genotype probabilities

For a general mixture having the density function form p(x; /)"
+k

j/1
n
j
f (x; h

j
), the posterior probabilities W

5
(t"1,2, g) of a

sample having x can be computed as:

W
5
"n

1
f (x; h

5
)/p(x; /),

g
+

t/1

W
5
"1.

For model D, the posterior probabilities of individuals in B
1
, B

2
,

and F
2

will be:
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1
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4
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5
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51
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5
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52
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5
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F
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6*
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6
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61
, p2

6
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6
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#f (X
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, p2
6
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6*2
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6*
; k

61
, p2
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An example

The frequency distributions of plant height in the six
populations of a rice cross between Nanjing No. 6 and
Guangcong are given in Table 3. It is obvious that the
F1 population has a tendency toward the high parent;
B1 shows a single mode in the high-plant height direc-
tion; B

2
shows two modes in both dwarf and high

directions; and so does the F
2

population. The former
conclusion from the Mendelian method was one reces-
sive gene controlling the dwarf trait. But if the continu-
ity in the populations and components is taken into
consideration, it is important to distinguish the poly-
genic variation and the environmental variation from
the continuous variation.

From what has been discussed above, the maximum
logarithm likelihood, the AIC value and the maximum-
likelihood estimates in each genetic model were cal-
culated, and the results are listed in Table 4. From the
result of the test of fitness for model-C listed in Table 5,
the following conclusions can be drawn: the homo-
genous populations P1, F1 and P2 are distributed as a
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Table 3 The frequency distribution of plant height in the P
1
, F

1
, B

1
, B

2
and F

2
of the cross between Nanjing No. 6 (P

1
) and Guangcong

(P
2
) cm

80— 85— 90— 95— 100— 105— 110— 115— 120— 125— 130— 135— 140— 145— 150— 155— 160— 165— 170— 175—180—185

P
1

4 5 12 22 2
F
1

3 17 8 4
P
2

1 11 13 18 5
B
1

20 14 24 13 12 3
B
2

1 10 18 27 18 11 2 1 3 14 19 22 11 4 1
F
2

5 9 15 13 13 11 14 14 8 2 9 9 41 30 69 85 72 50 23 6 2

Table 4 The AIC values and maximum-likelihood estimates under various genetic models. Note: ‘‘—’’ represents no such parameter in this
model: the EM algorithm for model B-6 not converged

Model AIC k
1

k
2

k
3

k
41

k
42

k
51

k
52

k
61

k
62

k
63

p2 p2
4

p2
5

p2
6

A-1 7230.75 161.39 151.89 100.86 — — — — — — — 70.74 — — —
A-2 7976.79 168.54 139.18 109.81 — — — — — — — 180.29 — — —
A-3 7243.94 155.38 155.38 100.97 — — — — — — — 85.93 — — —
A-4 8251.19 157.05 134.51 134.51 — — — — — — — 560.78 — — —
B-1 7063.63 162.01 150.76 103.18 166.20 147.07 159.45 92.15 136.56 115.85 — 27.20 — — —
B-2 7089.38 161.94 149.77 103.51 143.64 168.07 159.60 93.68 153.47 111.98 — 30.36 — — —
B-3 7975.95 167.79 139.16 110.53 169.03 137.90 140.40 109.30 170.26 108.06 — 178.81 — — —
B-4 8192.44 157.45 133.47 109.49 169.46 169.46 121.48 121.48 133.47 133.47 — 388.88 — — —
B-5 7245.71 155.26 155.26 101.26 155.26 155.26 100.66 155.86 155.86 100.66 — 85.88 — — —
C 7583.21 162.54 148.31 103.58 150.95 — 123.54 — 145.11 — — 19.35 150.95 123.54 145.11
C-1 7620.77 162.09 147.84 103.88 154.97 — 126.10 — 140.53 — — 19.39 69.21 126.10 140.53
D 6993.71 162.54 148.31 103.58 156.98 146.01 154.17 97.13 156.68 155.70 103.25 19.35 24.96 44.14 106.93
D-1 7043.81 162.31 148.37 103.93 157.78 152.90 154.30 98.00 156.02 151.16 99.74 19.28 66.34 44.55 109.30
D-2 7618.73 162.12 147.91 103.89 161.77 148.25 132.66 119.14 153.97 140.45 126.94 19.37 25.38 809.40 489.79
D-3 7044.26 162.31 148.35 103.92 155.33 155.33 153.95 98.32 154.64 154.64 99.01 19.28 72.23 44.93 113.24
D-4 8336.24 161.24 140.84 100.36 145.81 156.26 73.30 73.30 165.72 176.16 176.17 35.76 25.63 3376.7 1351.9

Table 5 Tests of goodness-of-fit for models A-1, B-1, C and D in various populations. Note: In parentheses is the probability value

Model Generation U
1

U
2

U
3 /

W2 D
/

A-1 P
1

2.39(0.2) 0.06(0.81) 25.26*** 1.39*** 0.30***
F
1

8.93** 12.63*** 6.97** 1.22*** 0.41***
P
2

7.51** 3.51(0.06) 9.72** 1.45*** 0.26**
B
1

33.61*** 30.42*** 0.15(0.69) 3.10*** 0.33***
B
2

2.41(0.12) 0.20(0.65) 17.78*** 0.76** 0.14**
F
2

13.26*** 13.67*** 0.47(0.49) 1.58*** 0.10***
B-1 P

1
1.99(0.16) 0.75(0.38) 3.96* 0.61* 0.21*

F
1

9.19** 9.48** 0.33(0.57) 0.91** 0.37**
P
2

0.59(0.44) 0.40(0.53) 0.20(0.66) 0.24('0.10) 0.15('0.10)
B
1

30.31*** 29.47*** 0.15(0.70) 2.71*** 0.29***
B
2

2.17(0.14) 2.57(0.11) 0.51(0.47) 0.20('0.10) 0.07('0.10)
F
2

23.35*** 24.62*** 1.29(0.26) 2.67*** 0.14***
C P

1
0.48(0.49) 0.19(0.66) 0.87(0.35) 0.26('0.10) 0.14('0.10)

F
1

0.04(0.84) 0.31(0.58) 2.10(0.15) 0.19('0.10) 0.16('0.10)
P
2

0.10(0.75) 0.32(0.57) 1.09(0.30) 0.18('0.10) 0.13('0.10)
B
1

0.08(0.78) 0.00(0.95) 0.67(0.41) 0.10('0.10) 0.09('0.10)
B
2

0.08(0.78) 0.82(0.36) 22.03*** 2.33*** 0.22***
F
2

9.49** 7.04** 1.73(0.19) 5.57*** 0.20***
D P

1
0.48(0.49) 0.19(0.66) 0.87(0.35) 0.26('0.10) 0.14('0.05)

F
1

0.04(0.84) 0.31(0.58) 2.10(0.15) 0.19('0.10) 0.16('0.05)
P
2

0.10(0.75) 0.32(0.57) 1.09(0.30) 0.18('0.10) 0.13('0.10)
B
1

0.43(0.51) 0.30(0.58) 0.11(0.73) 0.12('0.10) 0.12('0.10)
B
2

0.69(0.40) 0.63(0.43) 0.00(0.96) 0.06('0.10) 0.06('0.10)
F
2

3.97* 2.64(0.10) 1.50(0.22) 0.67* 0.07*

*,**,***Represent the 0.05, 0.01, 0.001 significance levels, respectively
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Table 6 The estimates of genetic parameters of the cross between Nanjing No. 6 (P
1
) and Guangcong (P

2
)

First-order Estimate Second-order Estimate and component distribution
parameter parameter

B
1

B
2

F
2

d 29.15 p2
1

53.11 853.26 563.86
h 24.12 p2

.'
28.15 809.12 456.93

h/d 0.83 p2
1'

5.61 24.79 87.58
[d] 0.33 p2

%
19.35 19.35 19.35

[h] !49.24 h2
.'

(%) 53.00 94.82 81.03
[i] !15.96 h2

1'
(%) 10.56 2.90 15.53

[ j] !7.27 Components N(156.64, 24.96) N(154.17, 44.14) N(56.68, 106.93)
[l] 24.41 N(146.01, 24.96) N(97.13, 44.14) N(155.70, 106.93)

N(103.25, 106.93)

Table 7 The Bayesian classification of individuals of the segregating populations

B
1

B
2

F
2

X (cm) f Genotype X (cm) f Genotype X (cm) f Genotype

140—144 20 Aa 80—112 89 aa 80—122 98 aa
145—151 28 Aa#AA 139—170 75 Aa 123 2 aa#Aa
152—158 22 AA#Aa 124—127 4 aa#Aa#AA
159—167 16 AA 130—132 6 Aa#AA#aa

134—180 390 Aa#AA

normal distribution, there is no requirement for data
transformation and, if the segregation population is
a mixture, it should be a mixture of normal distribu-
tions. From Table 4, model-D has the least AIC value,
D-1 the second and D-3 the third. So the D-group
model is the most fitting model to explain the inherit-
ance of the quantitative trait in this example according
to Akaike’ s Information Criterion. The results from
LRT between models D and D-1, D and D-3, all
indicate that D is more suitable than D-1 and D-3. The
results in Table 5 also show the fitness of model D. So
one can reasonably deduce that the plant-height trait
in the cross is dominated by a mixture of a partially
dominant major gene plus additive-dominance-epi-
stasis polygenes.

The first-order and second-order genetic parameters
in model D, calculated from the results in Table 4, and
the components in each segregating population, are
given in Table 6. The plant height difference between
Nanjing No. 6 and Guangcong is controlled by a mixed
one major-gene and polygenes. The additive effect of
the major gene is estimated as 29.09 cm. The high-plant
trait is one of partial dominance, and the dominance
ratio of the major-gene is about 0.83. The major-gene
variations in B1, B2 and F2 are 53.0%, 94.8% and
81.0% of their total phenotypic variations respectively,
and are the main components. The polygenic variations
are 10.6%, 2.9% and 15.5% of their phenotypic vari-
ations, and are less important components. Thus, to
control the major gene means to control a large pro-
portion of the phenotypic variation.

The most probable major-gene genotype of an indi-
vidual in segregating populations is given in Table 7.
For the B1 population, individuals having a plant
height 140—151 cm can be classified into the Aa
genotype; but some of them with the plant height
145—151 cm have a 0.06—0.47 probability of being AA.
Those with a plant height of 152—167 can be classified
into the AA genotype; but some of them with a plant
height of 152—158 cm have a 0.43—0.05 probability
of being Aa. The genotypes of individuals in B2
can be clearly determined, i.e. those with a plant
height of 80—112 cm have the genotype aa and those
with a plant height of 139—170 cm have the geno-
type Aa. For the F2 population, individuals with a
plant height of 80—127 cm can be classified as
genotype aa; but some of them with a plant height
of 123 cm have a 0.07 probability of being Aa, while
some of them having a plant height of 124—127 cm
have a 0.05—0.15 probability of being Aa and
with 0.10—0.31 being AA. Those with a plant height
of 130—180 cm can be classified as Aa genotypes;
but some of them with a plant height of 130—132 cm
have a 0.26—0.30 probability of being Aa and a
0.22—0.09 probability of being aa. Those with a
plant height of 134—180 cm have a 0.65—0.66 prob-
ability of being Aa and a 0.32—0.34 probability of
being AA. The Aa component distribution overlaps
with the AA component, consequently individuals
falling in this area can not be classified definitely.
However, this is possible if further progeny tests are
carried out.
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Discussion

The present procedure is basically established on the
mixed one major-gene plus polygene inheritance theory
according to Elston (1984), combining it with the joint
maximum-likelihood fuction and the EM algorithm for
model fitting, the AIC criterion, the likelihood-ratio
test and the goodness-of-fit tests for model selection,
and the posterior probability for the major-gene
genotypic grouping of individuals, to form a system for
handling the joint analysis of multiple generations,
including P

1
, F

1
, P

2
, B

1
, B

2
and F

2
. This procedure is

especially appropriate for those crops with easy to
obtain hybrid seeds since backcrosses need to be made.
For those crops not easy to obtain hybrid seeds,
the joint segregation analysis based on the five popula-
tions P1, P2 , F1, F2 and F2:3 (F2-derived line) may
be adopted.

For an effective use of this prodecure, sample size is
of importance. Generally speaking, it should be greater
than 30 for a homozygous population and greater than
100 for a segregating population. The greater the popu-
lation size, the more precise are the results that will be
achieved.

The present procedure takes into consideration the
following four kinds of genetic models: one major-gene
inheritance, two major-genes inheritance, polygenic in-
heritance, and mixed one-major gene and polygene
inheritance. By using this procedure, the most suitable
model can be selected for a set of data. However, the
study still needs to be completed for the mixed model
containing two, or even more, major, genes. Further-
more, significant errors might exist for the genetic data
based on single-plant measurements in the six genera-
tions. To overcome this disadvantage, the data based
on a plot measurement in F

2
-, B

1
- and B

2
-derived lines

(i.e. F
2 :3

, B
1 :2

and B
2 :2

) should be used to reduce the
experimental errors. The joint segregation analysis
based on these family populations also remains to be
developed.
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