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5A Appendix: Coefficient Calculations for Expected | 6 FaCtOI'iaI Treatment DeSig ns

Mean Squares in Table 5.9
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i=1 j=1
D= En 2241324 112 =434 } The factr_)rial t.reatment design was introduced in Chapter 1 as a way tp investigate
the relationships among several types of treatments. The basic factorial treatment
36 design in a completely randomized experiment design and its analysis are intro-
__] ( ) (7 11655 — ——) =236 duced in this chapter. Planned contrasts and response curve estimation, discussed
:_ —1 in Chapter 3, are applied to the factorial treatment design. Methods to determine the
134 number of required replications and to analyze the factorial treatment design with
= ( ) (3 - -3—) = 1197 one replication or unequal treatment replications are discussed as well.
e = (_—j W-4= —-(36 —7.11655) = 1.93 6.1 Efficient Experiments with Factorial Treatment Designs
! Z ri—t ) :‘

Comparisons among treatments can be affected substantially by the conditions

under which they occur. Frequently, clear interpretations of effects for one treat-
" ment factor must take into account the effects of other treatment factors. A special
type of treatment design, factorial treatment design, was developed to investigate

more than one factor at a time.

E Factorial treatment designs produce efficient experiments. Each observation
supplies information about all of the factors, and we are able to look at responses to
one factor at different levels of another factor in the same experiment. The response
to any factor observed under different conditions indicates whether the factors act
on the experimental units independently of one another. Interaction between factors
occurs when they do not act independently of one another.

Example 6.1 Compaction Effects on Asphaltic Concrete Durability

Asphalt pavements undergo water-associated deteriorations such as cracking,
potholes, and surface raveling. The weakened pavement occurs when there is
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176 CHAPTER6 FACTORIAL TREATMENT DESIGNS

a break in the adhesive bond between aggregate and the asphaltic cements
that make up the pavement. Research is directed to find improved asphalt
pavements more resistant to deterioration.

The ability to develop superior asphalt pavement mixes requires a reliable
method to test the experimental mix for bonding strength. Several methods
have been developed to compact asphaltic pavement specimens in prepara-
tion for bonding strength tests.

Two factors known to have an effect on specimen bonding strength are (1)
the methods used to compact the specimen during construction and (2) the
aggregate type used in the asphalt mixture. If two compaction methods pro-
duce the same relative results for strength tests with two different aggregate
types, then either compaction method could be used to evaluate experimental
asphalt mixes for either aggregate type. If the results are dependent on aggre-
gate type, then one or both of the compaction methods may not be adequate
for discriminating between experimental mixes of asphalt.

The factorial treatment design can be used to evaluate whether the two
factors act independently on the strength of the test specimens. The factorial
arrangement is illustrated in Table 6.1 for test specimens prepared by two
compaction methods (static and kneading) using two types of aggregate
(silicious rock and basalt) for each compaction method. For illustration,
specimen bonding tensile strength values are shown in Table 6.1 for the four
treatments as pressure (psi) at test failure.

Factors are types of treatments such as compaction method and aggregate
type, and different categories of a factor are levels of the factors. The levels of
compaction method are Static and Kneading and the levels of aggregate type are
Silicious Rock and Basalt. The factors are identified by uppercase letters A and B
in Table 6.1. The levels of the factors are denoted A;, Az, ... ; B, By, ... ;and
so forth. The factorial arrangement in Table 6.1 with two factors A and B each with
two levels, has 2 x 2 = 4 treatment combinations, A1 5y, A1 B3, A9 B, and Ay Bs.

Table 6.1 Tensile strength (psi) of asphalt specimens

Compaction Method (B)
Aggregate ) {(B1) (B1) Aggregate
Type (A) Static Kneading Means
Silicious (A4)) \ 68 60 64.0
Basalt (A3) _ \ 65 97 81.0
Compaction Means 66.5 78.5

Source. A. M. Al-Marshed (1981), Compaction effects on asphaliic concrete durability. M.S. thesis,
Civil Engineering, University of Arizona.
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The factorial treatment design consists of all possible combinations of the lev-
els of several factors. Experiments with factorial treatment designs often are re-
ferred to as factorials or factorial experiments.

The levels of a guantitative factor take metrical values, whereas the levels of a
qualitative factor are categories of the factor. Both factors in Example 6.1 are quali-
tative factors; the two levels of each factor are categories. Temperature exemplifies
a quantitative factor with levels of 10°C, 20°C, and 30°C, for instance.

6.2 Three Types of Treatment Factor Effects

The effect of a factor is a change in the measured response caused by a change in
the level of that factor. Three effects of interest in a factorial experiment are simple
effects, main effects, and interaction effects. These effects are illustrated with popu-
lation means for the factorial treatments in Example 6.1.

The population means for a factorial experiment with two factors, A and B
can be represented with cell means p;;. The term cell mean is derived from a tablec;
display of means for each of the treatment combinations, illustrated in Table 6.2 for
a2 x 2 factorial,

The means of the treatment combinations, {111, f12, a1, and pos, are located in
the cells of the table—hence, the designation cell means. The means on the mas-
gins of the table are the averages of the cell means and are referred to as the mar-
ginal means. The overall or grand mean is the average of the cell means,

_ 1
B, = 3(pa1 + paz + pior + pa).

Table 6.2 Table of means for a2 x 2 factorial experiment

B
A 1 2 Factor A Means
1 H11 H1z . = 500 + p112)
2 Ha1 Moz Ty, = (i1 + pr20)
Factor B Means 2 o

= Fpn + 1) = L0 + po)

Simple Effects Are Contrasts

The simple effects of a factor are contrasts between levels of one factor at a single
level of another factor. The simple effect (/) of aggregate type (A) on tensile
strength with static compaction (B} calculated from the cell means in Table 6.1 is

l;=ﬂ21-p’,11=65—68=—3

It measures the difference in tensile strength between basalt and silicious rock
specimens when the static compaction method is used to form the specimens. The

average tensile strength of silicious rock specimens was greater than that for basalt
specimens. Similarly, the simple effect
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by = p1op — p1z = 97 — 60 =37

measures the difference in tensile strength between basalt and silicious rock speci-
mens when the kneading compaction method is used. In this case, the average ten-
sile strength of the basalt specimens was greater than that for the silicious rock
specimens.

Main Effects Are Average Effects of a Factor

The main effects of a factor are contrasts between levels of one factor averaged
over all levels of another factor. The main effect of aggregate type on tensile
strength is the difference between the marginal means for aggregate type in Table
6.2

Iy =T, — Ty, =81 — 64 =17 (6.1)

The difference in tensile strength between basalt and silicious rock specimens is 17
psi in favor of the basalt when averaged over both compaction methods.

Upon close inspection the main effect for aggregate type can be expressed as
the average of the two simple effects. Thus, from Equation (6.1)

1 1
s =1Jip — W = 5(#21 4+ pas) — 5(”11 + p12)

1 1
= 5(#22 —pz) + 5(#21 — )

i
= 5(31 +13)

or 17 = %( — 34 37). The main effect contrast, I3 =17, implies the basalt speci-

mens are stronger than the silicious rock specimens. The simple effect contrast for
kneading compaction, {; = 37, supports the same conclusion. However, the simple
effect contrast for static compaction, I; = — 3, suggests the opposite conclusion.
The difference between the two simple effects indicates aggregate type and com-
paction method do not act independently of one another in their influence on speci-
men strength.

Interaction Effects Are Differences Between Simple Effects

The interaction effect measures differences between the simple effects of one
factor at different levels of the other factor. Consider the two simple effects of
aggregate type on tensile strength shown in Display 6.1.

The difference between the two simple effects, {4y = [y — l;, measures inter-
action between aggregate type and compaction method factors as they affect the
tensile sirength of the specimens. The difference between basalt and silicious rock
specimens was 40 units greater with kneading compaction than it was with static

e et
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Display 6.1 Interaction Effect of Compaction Method
with Aggregate Type
Compaction Method Simple Effect of Aggregate Type
Static L =65-68=-3
Kneading Ih =97 -60 =137
Difference b =37 ~-(3)=40

compac?ion. Thus, the effect of aggregate type on tensile strength measurements of
asphalt is dependent on the method employed to compact the specimen for testing
The example illustrates the caution that must be exercised in interpreting ma.in
efﬁ?cts and represents a situation in which interpretations should not be based on
main effects. The effect of aggregate type on tensile strength of the specimens dif-
fered cpnsiderably between the static and kneading compaction methods. Although
the main effect measurement suggested the basalt specimens would be stronger, it
was only true for the kneading compaction method. 1

The 2 x 2 factorial interaction contrast is derived fro i
) m the difference betw
two simple effects for factor 4. e the

AB = (ugy — p12) — (o1 — p11) (6.2)
= (poa — pa1 — pt12 + f11)

The same expression may be derived from the simple effects for B.

The presence or absence of interaction is illustrated graphically in Figures 6.1
and 6.2 for a factorial arrangement with two factors, 4 and B, each at two !evel;;_
The graphic measure of a simple effect for each factor is illustrated in Figure 6.1
Th‘.: response to A is graphed separately for each level of B. In the absence of inte'r:
action t'he parallel lines show an identical response to A for both levels of B, Under
the.se circumstances, the factors act independently, and the main effects can be used
to interpret the effects of the two factors separately,

The presence of interaction is iflustrated in Figure 6.2. The response lines are
not pa.ralle] when there is an interaction between the two factors. Differences in the
magnitude of the responses (Figure 6.2a) or in direction of the responses (Figure
6.2b) represent interaction between the factors. The factors do not act indepen-
dently, and interpretations should be based on simple effect contrasts.

Example 6.2 Compaction Effects on Asphaltic Conerete Revisited

Research Objectives: The variation in tensile strength of asphaltic concrete
test specimens, as discussed in Example 6.1, was known to be associated with
the .cqmpacltion method and aggregate type used to construct the specimens.
A civil engineer conducted an experiment to evaluate differences among a set
of compaction methods for their effect on the tensile strength of test speci-
mens and to determine to what extent the aggregate type affected the com-
parisons among the compaction methods.
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Table 6.3 Tensile strength (psi) of asphaltic concrete specimens for two aggre-

Response : gate types with each of four compaction methods
B, Compaction Method
Aggregate Kneading

/ Type Static Regular Low Very Low

5 Basalt 68 126 93 56

Simple afoct B, 63 128 101 59

¢ } of Bat A } Simple effect 65 133 98 57

of Aat B, Silicious 71 107 63 40

........................................ 66 110 60 41

A A 66 116 59 44

Source: A. M. Al-Marshed (1981), Compaction effects on asphaltic concrete durability. M.S. thesis,
Civil Engineering, University of Arizona.

Figure 6.1 Iilustration of no interaction in a factorial arrangement

R Responss 6.3 The Statistical Model for Two Treatment Factors
esponse

2 B, The Cell Means Model

The observations from a factorial experiment with two factors, 4 with « levels and
B with b levels, can berepresented with the cell means model. The cell means
model for the a x b factorial with r replications in a completely randomized design

.//—0 B, g 15

Yijh = Wiz + ek (6.3)
Ay A A Az
(a) Intaraction as a difference (b)lptergchonasadﬂtarence o 02a e 1h B2
in magnitude of response in direction of response
where p;; is the mean of the treatment combination 4;B; and e;; are random
Figure 6.2 Illustration of interaction in a factorial arrangement experimental errors with mean 0 and variance o2,
Treatment Design. A factorial arrangement was used with “compaction Least Squares Estimates of Cell Means

method” and “aggregate type” as factors. There were two levels of aggreg‘ate
type—A; (basalt) and Ay (silicious rock)—and four leveis of cor.npachon
method—C (static pressure), C; (regular kneading), Cs (low kneading), and

The cell means can be estimated by the least squares method outlined in Chapter 2.
The sum of squares for experimental error is

| i b r a b r
4 (very low kneading). . .
| S5 Error = ey = (yiik ~ Tii;)? (6.4)
Experiment Design: Three replicate specimens of the asphalt concrete were ; ; ; i ; ; kzz; .
constructed and tested for each of the cight treatment combinations. The 24 .
specimens were prepared and tested in random order for a completely ran- The least squares estimators for y;; are the observed cell means of the treatment

. . combinations.
domized design.

The data for tensile strength measurements (psi) on the 24 specimens are
shown in Table 6.3.
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—~ Wil _
iy = —TJ" = Ui (6.5)

i=1,2,...,6 j=12,...,b

The observed marginal means are unbiased estimates of the factor marginal
means, so that 7i; =7; and ﬁ.j =7 ;. The overall mean fi_ is estimated with the
observed grand mean, 7. Estimated cell and marginal means for the asphaltic con-
crete specimens are shown in Table 6.4,

Table 6.4 Estimated cell and marginal means for tensile strength of asphaltic
concrete specimens

Compaction Method
Aggregate Kneading Aggregate
Type Static Regular Low  Very Low Means @)
Basalt 653 129.0 97.3 57.3 87.3
Silicious 67.7 111.0 60.7 41.7 70.3

Compaction means (7 ;) 665 1200  79.0 49.5 7, =788

Additivity and Factor Effects

The cell means j;; represent the true response for the treatment combination of lev-
el ¢ for A and level § for B. In the absence of interaction the cell mean can be ex-
pressed as a sum of a general mean, , plus an effect contributed by A, say oy, and
an effect contributed by B, say j3;, so that ps; = p + o + ;.

The effect for the ith level of factor A can be defined aso; =, — . The
effect of A is a deviation of the marginal mean from the grand mean. The effect for
the jth level of B can be defined as 3; = fz; — 1. The effects will be fixed effects
if the levels of the factors are reproducible. In the absence of interaction, the cell
mean is the sum of the grand mean and the effects of the factors for that cell:

pi =0+ @ -B)+E@E; 1) (6.6)

The effect of the ijth treatment combination, 73; = (pi; — 7., is the sum of the two
factor effects:

(pis—m)=0@; —E)+({,; — E) (6.7}

and the effects of the factors are additive in the absence of interaction.

In the presence of interaction the treatment effect will not be equal to the sum
of the individual factor effects as shown in Equation (6.7). An interaction effect,
denoted as (af3);;, can be defined as the difference between the two sides of
Equation {6.7), or
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(@)= —B)— (B —B)— (B, —B.) (6.8)
= Pij — Py, — E_j +

The new set oflparameters, o, 35, and (¢);;, can be used to write the linear
model for the factorial as an effects model

Yisk = g+ o + B + (aff); + ey (6.9)

i=1,2,...,a j=1,2,...,b6 k=127

where 1 is the grand mean 7, o; is the effect of the ith level of A, 3, i
: > O , 3; is the effect
of the jth level of B, and («f3);; is the interaction effect between the ;th fevel of A

and the jth level of B. By the nature of their definitions the sums of the effects are
equal to zero. That is,

a b a b
_leai =0, ;ﬁj =0, > (af);=) (@By=0  (6.10)
i= = i=1 =1

6.4 The Analysis for Two Factors

Fundamental Sum of Squares Partition

The fundamental partition of the total sum of squares can be derived from the
equation

@ik —¥.) =5, — 7)) + Wik — 7;3) (6.11)

The deviation of an observation from the grand mean (y;;. — % ) is the sum of two
parts:

e the treatment eftect (3, ~ ¥ )

e experimental error (yix — U;;)
For example, using the observations in Table 6.3 and the means in Table 6.4, the
total deviation for the first observation in Table 6.3 is ’

{1 — 7 )=68-788= —10.8.
The treatment deviation is
@y, — 5.)=(653-78.8)= — 13.5
and the experimental error is
(yin— 7, ) =(68—-0653) =27

and
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—10.8= —13.5+27

The latter deviation (y;j — 7;;.) is a measure of experimental error for the ob-
servation in a properly replicated experiment. If both sides of Equation (6.11) are
squared and summed over all observations, the result is

a T a [
 DDID I TSI b S B @12
i=1 j=1 k=1 =1 3j=1

a ] r

+Y > > ik — By’
e

i=1l j=1

or
S5 Total = S5 Treatment + S5 Error

Any crossproducts formed by squaring the right-hand side of Equation (6.11) sum
to zero. There are a total of rab observations, so that S5 Total has (rab — 1) de-
grees of freedom. With ¢ = ab, 55 Treatment has (ab — 1) Qegrees of freedom and
the remaining ab(r — 1) degrees of freedom are associated with 5SS Error.

Sums of Squares for Factorial Effects
The treatment effect (F; — 7.)in Equation (6.11) can be expressed as the identity
Gom T =G~ )+ @s— DI+ Ty~ T = Tp 1) 613

where the treatment effect is a sum of three effects:

o factor A main effect (; — ¥ )
)

e factor B main effect (¥; — 7.
. interaction (’ylj‘ - g‘l - ﬂj + ﬂ)

For example, the treatment effect for basalt with low kneading in Table 6.4 is

(§13. — 5.y =973 788 =185

The main and interaction effects are

:i : | » Basalt main Effect :
(7,.— 7.)=873-788=85

¢ Low kneading main effect:
(F5— F.)=790-788=02
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* Interaction:

(Jra. = B, — F3.+7.)=973-873-790+788 =938

and
185=854+02498

If both sides of Equation (6.13) are squared and summed over all observations
the left-hand side is the 55 Treatment. The treatment sum of squares is partitioned
into three components represented by the effects on the right-hand side of Equation
(6.13). Any crossproducts formed by squaring the right-hand side will sum to zero.

The sum of squares for the first component will be the sum of squares among
the marginal means for A

SSA=rbYy (5, - 7. (6.14)
i=1
and the second will be the sum of squares among the marginal means for B

S5B =ra

b
> @5 - 7.) (6.15)

J=1

The sum of squares for the third component

[ [
SSAB)=rY " > @y~ 7. - ¥, + 7.F (6.16)
1 =1

i=

is the sum of squares for interaction. That part of the treatment sum of squares is
not explained by the sum of squares attributed to the two factors as SSA and
S5 B. Consequently, the additive partition of §5 Treatment is

55 Treatment = SSA + S5B + SS5(AB)

The {ab — 1) degrees of freedom for the treatment sum of squares are allocated
to the three partitions of S5 Treatment. The factors, A and B, have o and b levels
respectively, therefore SSA and SSB have (@ — 1) and (h— 1) degrees of free-
dom. The remaining degrees of freedom allocated to the sum of squares for interac-
tion are the degrees of freedom for treatments (ab — 1) minus the degrees of
freedom for the separate factor sums of squares (z— 1) and -1, or
(@b-1—{a-1D—(b~1) = (a— Db -1). The degrees of freedom for inter-
action sums of squares in factorials is the product of the degrees of freedom for the
factors included in the interaction.

The complete partition of the total sum of squares for a factorial arrangement
with two factors is summarized in the analysis of variance shown in Table 6.5.

The derivation of the sum of squares partitions from solutions for the least
squares normal equations of the effects model is shown in Appendix 6A. The
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Table 6.5 Analysis of variance for a two-factor treatment design

Source of Degrees of Sum of Mean Expected
Variation Freedom Squares Square Mean Square
Total rab— 1 58§ Total
Factor A a—1 35A MSA o2 + rbb?
Factor B h—1 S5B MSB o + raf}
AB Interaction {a— 1)(b — 1} SS(AB) MS(AB) o2 762,
Error ab(r — 1) SSE MSE ol
o ’ b
g2 =3 @, — 5y/@-D 0y = J}:l(ﬁ.j - g} /0-D

=1

o 0
( 02 = 32 3 Gy — ;= Ay +EP/(@= D=1

=1 j

w
I

Table 6.6 Analysis of variance for tensile strength of asphalt specimens in a
4 x 2 factorial arrangement

Source of Degrees of ~ Sum of Mean
: Variation Freedom  Squares Square F Pr>F
g Total 23 19,274.50
Compaction (C) 3 16,243.50  5,414.50 569.95 000
‘ Aggregate (A) I 1,734.00  1,734.00 182.53 000
i Interaction (AC) 3 1,145.00 381.67 40.18 .000
Error 16 152.00 9.50

analysis of variance for the data from Table 6.3 on the asphalt concrete specimens
is shown in Table 6.6.

Tests of Hypotheses About Factor Effects
Inferences about individual factor effects depend upon the presence oOf absence of
interaction. Significance of interaction is determined before any determinations of
significance for main effects of the factors.

In the absence of interaction, (@B = it
(6.8), and 6% =0 in the expected mean square for AB interaction. The null

hypothesis for interaction

Ho: (@f)g = i — B — B+ B, =0 for all i, j

—F —B;TE. =0 from Equation

versus the alternative

Hy: (@B = pig— B, — i TE. £ 0 forsomei,j

is tested with
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Fy= MS(AB)
TMSE (6.17}
with critical value Fa,(a—l){b—]],ab(r—~i)-
| _If_ thelf are no differences among the marginal means for A, th
o =7 7, =0 and 62 =0 in the expected mean square for A Tl': §
hypothesis of equality among the means e

Ho: oy =y = =0,

versus the alternative

Ho: @, #E, forsomei, k

is tested with the ratio

P MSA
= 35E (6.18)
with critical value Fy ;1) a¢r—1).
If there are no differences among the marginal means for B, then

Bi=f;—F =0and 6] =0i
4 7. L, = 0 in the expected
hypothesis of equality among the means ’ mean square for B. The nul

Hy: E-1=E.2="'=E.b

versus the alternative

Hy f;#71, forsomejm
is tested with the ratio

F, = M5B
MSE 6.19)

with critical value F,, 1) ap(r-1)-

F Tests for Aggregate Type and Compaction Method Effects

Tabl’i‘t;eéf‘;:;s.t f?r intel_'actif?n, Fy = MS(AC)/MSE = 381.67/9.50 = 40.18 in
.6, indicates a significant interaction between a > and con
; : ggregate type and -
ion method s.mc-e Iy exceeds Fos315 = 3.24. The marginal meaxI:s for ag;'t;p:‘t:e
typf;gzagg sngn:}ﬁc;ntly different since Fy=MSA/MSE =1734 00/9g 50
= 53 exceeds Fs,1,16 = 4.49. The marginal means for " . -
. ' A, compaction meth
atsc;dzli‘fe};:'nt since Fy=MSC/MSE = 5414.50/9.50 = 569,95 exceedz F?d .
=3.24. The significance level for each of the tests is listed as Pr> F = 00 i
the rightmost column of Table 6.6, -
diffe":‘:l:czlgmﬁcant mteractilon can modify any inferences based on the significant
s among the marginal means of aggregate and compaction. The summary
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table of cell and marginal means in Table 6.4 will aid in the interpretation of the

results.

Standard Errors and Interval Estimates for Means

The standard errors for the estimated marginal and cell means of the factorial ex-

periment are

MSE 93
Aggregate: sy = o = m = 0.8%
MSE .
Compaction: 5. = —E— = —ii— = 1.26 (6.20)
P ra OF)
9.5
Cell means: Sy, = A/ 'MfE = 1/—3— =1.78

The Student ¢ with ab(r — 1) degrees of freedom is required for interval esti-
mates of the marginal and cell means. A 95% confidence interval estimate requires

tgosi6 = 2.12. The interval estimate for a cell mean is

iy, & toos16(5y,;) 6.21)

For example, the 95% confidence interval estimate for the basalt aggregate with
static compaction mean is

65.3 £ 2.12(1.78)
(61.5, 69.1)

Interval estimates are calculated similarly for the other means upon substitution of
the appropriate mean and standard error estimate from Equation (6.20).

Multiple Contrasts Assist Interpretations of Significant Interaction Effects

The significant interaction between aggregate type and compaction method indi-
cates the simple effects of one factor differ among levels of another factor. Conse-
quently, tests of hypotheses about the treatment factors initially should be based on
simple effect contrasts among the cell means.

The specific research hypotheses for the study will dictate the confrasts among
the cell means required to investigate the simple effects. One general research ques-
tion for this study might ask which of the aggregate types results in the strongest
specimens for each of the compaction methods. Another hypothesis might address
the effect of the kneading compaction methods relative to static compaction.

Contrasts among the cell means in Table 6.4 can be used to test the aggregate
type simple effects (basalt versus silicious) at each level of compaction to address
the question of which aggregate type results in the strongest specimens for each
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CO t O . 11 Sts and thEI 9 (}/ i
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fOllI' tEStS can be COI’]H‘O“ W i ONnIerro = | ¥
ed ]th the B f i isti

Display 6.2 Estimated Contrasts for Aggregate Simple Effects

Compaction
95% 5CI

g{::fwd _ Contrast (Basalt-Silicious) (L - )
Re flar Cp = yll' - 521. = 653 - 67.7 = — 2.4 (— 9.’5 4 7)
ngv ¢ = Fiz, — Poo. = 1290~ 1110 = 18.0 (109,25.1)
Low ¢ =T, ~ Tz = 97.3 — 60.7 = 366 (29.5.43.7)

ry low 4 = U1y — Tog =513 —417 =156 (85.22.7)
Standard etror s, = MSE,, 93

Summary Statements About Effects of the Factors

There is no difference i i i
: n specimen tensile strength between
_ ' . the tw
meglgj static compaction since the interval includes 0. The spec?nlaf i
sructed l-orrll l;asalt have gr?ater tensile strength than those constructed ﬂfmc?l?-
siicious a(r)c or the kneading compaction methods since lower limits of th S
€ greater than O and the greatest difference between the es
was riic;md with the low kneading compaction egrogale types
ecC i i ‘
infomaﬁoﬁn';gzﬁis::és ;o conslder depend on the nature of the problem and the
rom the study. Those compari i
nfo . parisons discussed i -
o Iltl:_.%l [i:ragratphs \tvhere made to illustrate the interpretation of interactimin'l't‘lllle e
e notion that inferences regardin i Jato Bypes
. g comparisons betwe
plot en a
n;ozg r;o:;g;actmn methods depend on the other factor in the studf gl fypes
L ocom l;IJ] . llesoel}filzltts)r;% ethefmalrgu}al means for a factor can be informative when
of a similar direction and magni
all of 1s sim . : gnitude. The compari
o m%)re ;rget:nii.larilﬁ;?s res;lt ina :gore general inference about the factor fndl:l(:g;
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Residual Analysis to Evaluate Assumptions

The assumptions for the model regarding homogeneity of variances and nor-
mal distribution can be evaluated with the residuals as discussed in Chapter 4. The
residuals for the two-factor factorial are computed as the deviations of the observed
values from the estimated means for each cell in the arrangement. The residual for
any cell is € = yin — /giﬁc =ik — Yy For example, the residual for the first
observation in Table 6.3 is

En =y — b, =68—-653=27

The plots for the square root of absolute residuals versus the estimated values
and the normal probability plot of the residuals are shown in Figures 6.3a and b.
The plots show no strong evidence of heterogeneous variance or nonnormality. The
Levene (Med) test for homogeneity of variance is left as an exercise for the reader
with reference to Chapter 4 on methods for evaluating assumptions.
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Figure 6.3 Residual plots from the analysis of variance for data on strength in
Example 6.2: (a) square root of the absolute residuals vs. estimated values and (b)
normal probability plot of residuals

6.5 Using Response Curves for Quantitative Treatment

Factors

Response trend curves for quantitative treatment factors were estimated with
orthogonal polynomials in Section 3.3. Recall that the estimated response curve has
the advantage of portraying the relationship between the response variable and the
treatment factor throughout the numerical range of the factor that was used in the
study. The evaluation of response trend curves is extended to the two-factor
experiment in this section. The analysis is discussed initially for experiments with
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one quantitative factor and one qualitative factor. Subsequently, responses will be
analyzed for experiments with two quantitative factors.

One Quantitative Factor and One Qualitative Factor

Ascertaining whether there is interaction between the quantitative and qualitative
factor is the first objective in the analysis. The response to the quantitative factor
will be different across levels of the qualitative factor when the two factors interact.
In that case, the response curves for the quantitative factor can be estimated sepa-
rately for each level of the qualitative factor. In the absence of interaction, the
response trend to the quantitative factor will be similar at all levels of the quali-
tative factor, and a single response curve will suffice for description of the process
with respect to the quantitative factor.

Example 6.3 Heavy Metals in Sewage Sludge

Sludge is a dried product remaining from processed sewage; it contains nutri-
ents beneficial to plant growth. It can be used for fertilizer on agricultural
crops provided it does not contain toxic levels of certain elements such as
heavy metals. Typically, the levels of metals in sludge are assayed by grow-
ing plants in media containing different doses of the sludge,

Research Hypothesis: A soil scientist hypothesized the concentration of cer-
tain heavy metals in sludge would differ among the metropolitan areas from
which the sludge was obtained. The variation could be a result of any number
of causes, including different industrial bases surrounding the areas, If this
were true, then recommendations for applications on crops would have to be
preceded by knowledge about the source of the material, An assay was
planned to determine whether there was significant variation in heavy metal
concentrations among diverse metropolitan areas.

Treatment Design: The investigator obtained sewage sludge from treatment
plants located in three different metropolitan areas. Barley plants were grown
in a sand medium to which the sludge was added as a fertilizer. The sludge
was added to the sand at three different rates: 0.5, 1.0, and 1.5 metric
tons/acre. The factorial arrangement for the treatment design consisted of one
qualitative factor, “city,” with three levels and one quantitative factor, “rate,”
with three levels.

Experiment Design: Each of the nine treatment combinations was assigned
to four replicate containers in a completely randomized design. The
containers were arranged completely at random in a growth chamber. At a
certain stage of growth the zinc content in parts per million was determined
for the barley plants grown in each of the containers. The data are shown in
Table 6.7, and the analysis of variance is shown in Table 6.8. The manual
calculations for linear and quadratic sums of squares partitions are shown in
Table 6.9.
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Table 6.7 Zinc content (ppm) of barley plants grown in media containing sludge
at three rates from three metropolitan areas

Table 6.9 Calculation of linear and quadratic contrast sums of squares partitions
for rate and rate x ¢ity interaction

y City and Ra“gM T/hectare) — Rate (metric tons/hectare) Linear  Quadratic
Ci = —
05 10 15 05 10 15 05 10 15 % 22::5 3(1):?15 3;“‘158 21}1)1?;“' = P;j??'
%64 252 260 301 477 738 194 232 189 B S8 4800 0 4lde 738
235 392 446 3.0 394 7L 193 213 198 C 1910 2190 2005 095  —465
254 255 355 308 553 684 187 232 196 Means (5 ;) 5497 3357 4297 1300 -
29 319 386 328 507 771 190 199 219 Tinear (B..) — - : : -84
Source: 1. Budzynski, Department of Soil and Water Science, University ot Arizona. Quadratic (P‘Zj) | _9 1
Table 6.8 Analysis of variance for zinc content in barley plants grown in media SS(R linear) ralX Pyg ; /8 PE = 12{18]/2 = 1944
containing sewage sludge at three different rates from three metropolitan areas SS[R quadratic] = ra[Z Py ;]*/T P = 12[0.84]%/6 = 1.41
e SS(R linear x C1 5% Py /5 P — SS|R linear]
d Source of Degrees of  Sum of Mean v 9 . )
: Variation Freedom  Sguares Square F Pr> F ' = 4{11.63° +4142° + 0957 — SS|R linear]
Total 35 999338 (2) ‘
L Rate (R) 2 194545 97272 50.71 000 = 1760
N Rate linear I 1944.00 1944.00 101.35 000 $5[R quad x C] 1% P15 Py = SR quad)
| Rate quadratic 1 1.45 1.45 0.08 786 A(Z 017 +7.38% 4+ (— 4.65)]
| City (C) 2 572067 286034 149.13 000 = 5 — SS{R quad]
‘ Rate x City (RC) 4 1809.40 452.35 23.58 .000 : = 49
! Rate linear x City (RC) 2 1760.15 880.07 45.88 000
; Rate quadratic x City 2 4925 24.63 1.28 293
Error 27 517.86 19.18
Figure 6.4 along with the cell means. The plot illustrates the Rate(linear) by City

@nteraction. The response to rate is linear for each city. The significance of the
interaction between city and the linear partition for rate shows up in the plot as a
different linear response of zinc to rate for each city.

The linear regression contrasts for rate are simple effects for rate computed for
each of the cities. The linear regression lines can be computed for each city from
the estimated effects in Table 6.9 or with a standard regression computer program.
The regression line can be computed following the procedure in Section 3.3 using
the cell means in Table 6.9. The linear orthogonal polynomial coefficient estimate
forcity A is :

The analysis of variance in Table 6.8 indicates significant interaction between
Rate and City and significant main effects for both factors (Pr > F = .000). The 2
degrees of freedom for Rate sum of squares partition into 1 degree of freedom each
for the linear and quadratic rates. The I test indicates significance for the linear
regression partition (Fp = 101.35) and nonsignificance (Fy = 0.08) for the qua-
! dratic partition for Rate.

The 2 degrees of freedom for each of the Rate by City interaction sums of
squares indicate the variability among cities in linear and quadratic regression
coefficients for Rate. The interaction between Rate linear regression and City is
signiﬁcant (Fy = 45.88), but the interaction between Rate quadratic regression and . ' a1 = TP/ T P}zj
City is not significant (Fp = 1.28). - 1(24.55)+ 0(30.45) + 1(36.13)  11.63

(- 1P+ 02+ 17] 72

5.8

Interpret Factor Effects with Regression Contrasts ™ .
. . ' e mean for city A is %, =30.39. With \; =1, R = = i

| The significant interactions between city and linear regression on rate of sludge 3.5), the transfortrynationytl(;an equation 11n te);:ns olf’rﬁe ( 1;0’ and d = 0.5 (Display

] application suggests that interpretations should be based on separate regression ) is

lines for each city. The estimated linear regression lines for each city are plotted in
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Figure 6.4 Mean zinc content versus rate of sludge application for three cities

F=7. tal

=30.39 + 5.89?'0;5]'0—) =18.79 + 11.6(R)

The linear contrast for city C (0.95 in Table 6.9) is considerably srqa]ler than
that for the other two cities, 11.63 and 41.42 for cities A and B, re‘spectlvely. The
standard error for the rate linear contrast on the basis of cell means in Table 6.9 for

any particular city is

\/TMSE)[(— e+ + 1% [(19.18)2] _ 11
8. = , = 3 .

The 95% simultaneous confidence intervals for the three linear contrasts
require the Bonferroni 25327 = 2.55. The 95% SCI for cities A,. B, and C are,
respectively, (3.73,19.54), (33.52,49.33),and ( — 6.96, 8.86)_. The linear responses
for cities A and B are significantly positive, with city B having the largest positive
linear contrast. The interval for city C includes 0, and we can conclude that zinc
will accumulate in barley crops fertilized with increasing amounts of the s}udge by-
product to the greatest extent from city B and to a lesser extent_ from that of city A,
but that there will be no significant accumulation from that of city C.

Two Quantitative Factors

The response to two quantitative factors can be representéd by a-polyr.omial equa-
tion with two independent variables. The degree of the polynomial will depend on
the number of levels for each of the factors. First-degree equations can represent a

[ P Y
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factor with two levels, second-degree equations for three levels, and so forth. The
geometric representation of a polynomial equation with two independent variables
is a response surface in three dimensions. For example, suppose the levels of factor

- A and factor B are represented by two metrical variables 21 and x; in a quadratic

polynomial. The second-degree polynomial equation

y=fo+ Biz1 + Boxi + Pazo + Baxl + Pearzo (6.22)

is an empirical function commonly used for the approximation of a response sur-
face in experimental studies. The quadratic surface can be explored for factor levels
that result in the optimum response or different combinations of factor levels with
equivalent responses.

The analysis of the factorial experiment with two quantitative factors consists
of orthogonal polynomial partitions for the factor main effect and interaction sums
of squares. The nature of the polynomial response function can be determined from
these partitions. A graph of the responses can be used as an aid to interpret the role
that each of the factors plays in the response.

Example 6.4 Water Uptake by Barley Plants

Deposited salts accumulate in soils irrigated for agronomic and horticultural

crops. The increased soil salinity eventually suppresses plant development
and crop yields.

Research Hypothesis: An investigator hypothesized that exposure of plants
to high levels of salts in their media over time eventually inhibits the plant's
uptake of water and nutrients from the soil, thus suppressing the growth and
development of plants. An experiment was conducted with barley plants to
measure the effect of growth medium salinity on water uptake by the plants.

Treatment Design: A factorial arrangement was used with “salinity of
media” and “age of plant” in days as the two factors. The plants were grown
in nutrient solutions with the salinity level adjusted to three different levels.
The salinity levels expressed as units of osmotic pressure were 0, 6, and 12
bars. Plants were harvested at 14, 21, and 28 days.

Experiment Design: Each of the nine treatment combinations of salinity and
days was assigned to two replicate containers in a completely randomized de-
sign. The containers were placed in the growth chamber in a completely ran-
domized arrangement.

One of the measurements made at harvest was the amount of water uptake
by the plants during the experiment. Water uptake is expressed as milliliters
of water uptake per 100 grams of plant dry weight. The data are shown in
Table 6.10, and the analysis of variance is shown in Table 6.11. Manual cal-
culations for the sums of squares partitions are illustrated in Table 6.12.

Computational Netes: The arrangement in Table 6.12 is convenient for manual
computation of the sums of squares partitions from the cell means. Main effect and
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Table 6.10 Water uptake (ml/100 g) by barley plants at 14, 21, and 28 days
grown in solutions with salinity levels of 0, 6, and 12 bars

Salinity 0 bars 6 bars 12 bars

Days 14 21 28 14 21 28 14 21 28
2.2 50 132 37 359 54 28 45 176
33 57 124 435 172 110 34 59 83

Means (7;;) 2.75 535 12.80 410 6.55 1020 3.10 520 795

Sonrce: Dr. T. C. Tucker, Department of Soil and Water Science, University of Arizona.

Table 6.11  Analysis of variance for water uptake by barley plants

Source of Degrees of Sum of Mean
Variation Freedom Squares Square F Pr>F
Total 17 184.73
Salinity (S} 2 9.51 475 8.52 008
S'linear 1 7.21 721 12.92 006
S quadratic 1 2.30 2.30 4.12 .073
Days (D) 2 151,99 75.99 136.24 .000
D linear 1 147.00 147.00 263.55 .000
D quadratic 1 499 4.99 8.94 015
Salinity x Days (SD) 4 18.21 455 3.16 005
Slin x Dlin 1 13.52 13.52 2424 001
Slin x D quad 1 2.94 294 5.27 047
S quad x D lin 1 1.21 1.21 2.18 174
S quad x D quad 1 0.53 0.53 0.96 353
Error 9 5.02 0.56

interaction partitions can be computed in the same table. Main effect partitions are
normally computed from marginal means. However, cell means are used in Table
6.12 to compute the main effect partitions: thus, repeated values of polynomial con-
trast coefficients for main effect partitions are necessary for the cell means that con-
tribute to each of their respective marginal means. For example, S, the linear
contrast for salinity, requires a — 1 for each cell at the 0-bar level, a 0 for each cell
at the 6-bar level, and a + 1 for each cell at the 12-bar level.

The coefficients for the interaction partitions are determined as the product of
the coefficients for the corresponding components of the interaction. For example,
the coefficients for the interaction between salinity(linear) and day(linear) in Table
6.12 are formed as the products of the coefficients for the linear contrast of the
main effects for the two factors. Each coefficient for S;Dy is a product of the
corresponding coefficients for 5; and Dy, The computation is exhibited in Display
6.3.
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Ta!Jl_e 6.12 Calculation of linear and quadratic sums of squares partitions for
salinity and day main effect and interaction sums of squares

= Ws Means (y;;) S b Dy D, S D, SiD, 8,D; S,D
0 14 2.75 -1 1 -1 | 1 -1 -1 41 :
21 3.35 -1 1 0 -2 0 2 0 -2
28 12.30 -1 1 1 1 —1 -1 I 1
¢ 14 4.10 0 -2 —1 1 0 0 2 -2
21 6.55 0 -2 0 -2 0 0 0 4
28 10.20 0 -2 1 1 0 0 -2 -2
12 14 3.10 1 1 -1 1 -1 1 -1 1
21 5.20 1 1 0 -2 0 -2 0 -2
28 7.95 1 1 1 1 1 1 1 1
Y Pugy —47 - 4.6 210 6.7 -52 —42 2.7 3.1
L P, 6.0 18.0 6.0 18.0 4.0 12.0 120 360
58* 7.2 2.3 147.0 5.0 13.5 2.9 12 0.5
Effect  —0.78 —025 3.50 0.37 - 1.30 —0.35 023 0.09

ciy

S = (S Puij¥y; 2/ P, "Effect = © Puyjy;; /S P,

Display 6.3 Computation of Coefficients for Orthogonal
Polynomial Interaetion Contrasts

S -1 =1 -1 0 0 o0 1 1 1
Dy =10 1 -1 0 1 -1 0 1
Sy i 0 -1 0 0 0 -1 0 1

Interpretations for the Regression Contrasts

The.Fg statistics in Table 6.11 indicate significant interaction of the salinity(linear)
partition with the day(linear) and day(quadratic) partitions. Main effect partitions
for salinity(linear), day(linear), and day(quadratic) were also significant. None of
the salinity quadratic effects were significant at the .05 level of significance. The
response of water uptake to salinity level was the primary focus of the investiga-
tion. A profile plot facilitates the interpretation of the results with significant inter-
action. A plot of the cell means and the linear regression of water uptake on salinity
for each day is shown in Figure 6.5.

The linear regression lines for water uptake on salinity computed separately for
each day are shown in Figure 6.5 along with the estimated treatment means. The
salinity linear contrasts for each day computed from the S; column in Table 6.12
are shown in Display 6.4 along with their 95% simultanecus confidence intervals
using the Bonferroni t g5 39 = 2.93. The 95% SCI indicate salinity had no effect on
the water uptake by the plants for the first three weeks up to day 21 since the inter-
vals for 14 and 21 days include 0. However, by the end of the fourth week, day 28,
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Figure 6.5 Water uptake of barley plants at three salinity levels for 14, 21, and 28
days

Display 6.4 Linear Contrasts for Salinity for Each Day

95% SCT
Day Linear Contrast (L,U)
14 S = — 1(2.75) + 0(4.10) + 1(3.10) = 0.35 (—1.85,2.55)
21 5 = ~ 1(535)+0(6.55) + 1(5.20) = —0.15  (—2.35,2.09)
28 Sy = — 1(12.80) 4+ 0(10.20) + 1(7.95) = —4.85 (—7.05, — 2.65)
Standard error ERES \/MSE[( — 124+ 02 4 12)/r = /056 =075

water uptake by the plants decreased with an increase in the salinity of the medium

since the upper limit of the confidence interval for the linear contrast was — 2.65.
The differences among the linear responses to salinity resulted in significant

interactions between the salinity(linear) partition and the day partitions. The signi-

_ficant interaction between salinity(linear) and day(quadratic) effects indicates that

the linear response to salinity changes in a quadratic manner over days..

From day 14 to day 28 the Sy contrast values decrease in a quadratic trend. The
decrease in the contrast value from day 14 to day 21 is (0.15) - 035 = -0.50,
whereas the decrease in the contrast from day 21 to day 28 is (—4.85) — (-0.15)
= —4.70.
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Computing a Response Surface Equation

The polynomial equation relating water uptake to salinity and days will include the
terms judged significant in the analysis of variance tests. The significant terms were
Sy, Dy, Dy, 51Dy, and 5, D,. The equation in terms of § and D will be

Y= Po+ S+ PoD+ B3 D* + 4SO + 55 D° (6.23)

The coefficients for Equation {6.23) may be estimated directly from the data with a
multiple regression program, or they may be evaluated from the orthogonal poly-
nomial equation as shown in Section 3.3. The polynomial coefficient contrasts in
Display 3.5 are used for the transformations. Let P, and P.4 represent the poly-

nomial contrasts for salinity and day, respectively. The orthogonal polynomial equa-
tion can be written as

y=p+ P+ 1Py A bPu + (enPisPu+(evha PisPu (6.24)

where «, is the linear polynomial coefficient for salinity, -y, is the linear coefficient
for day, and ()12 is the interaction coefficient for salinity linear by day quadratic.
The estimates of the coefficients in Equation (6.24) are calculated in Table 6.12 as
Effect = ¥ P77, /5 P‘f:ij. For example, the estimate for (@)1 from the S, I, line

in Table 6.12 is -5.2/4 = —1.3. The term (o) P;Pe in Equation (6.24) with
At = 1 becomes

—1.3)\ (Sgé) A (D;ZI) = —0.0310(5 — 6D — 21)

The remaining estimates are computed in the same manner with 71 =5 = 6.44,
Ap = 1, and Ay = 3, and the resulting equation is

= 5.70 — 0.0133( — 6} + 0.50(D — 21) + 0.0227(D — 21)?
—0.0310(S — 6)(D — 21) — 0.0036(5 — 6)(D — 21)°

These equations can be used to explore response surfaces for maxima or mini-
ma, or they may be used to determine values of the factors that result in equivalent
responses. Specialized tools for these methods are discussed later in Chapter 13,
Response Surface Designs.

6.6 Three Treatment Factors

The inclusion of additional factors in the treatment design increases the complexity
of interaction patterns among the treatment factors. The number of treatment com-
binations increases rapidly as factors are added to the design. The three-factor de-
sign with a levels of A, b levels of B, and ¢ levels of C has abe treatment
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combinations. A fourth factor, D, with d levels further increases the number of
treatments by a multiple of d.

The two-factor design enables the investigation of the first-order, or two-
factor, interaction AB. The two additional first-order interactions, AC and BC, in
the three-factor design broaden the inferences from the study. In addition, there is a
second-order, or three-factor, interaction, ABC, to consider. Third-order, or four-
factor, interactions such as ABC D enter the increasingly complex interaction infer-
ence structure as factors are added to the design,

Example 6.5 Shrimp Culture in Aquaria

The California brown shrimp spawn at sea and the hatched eggs undergo lar-
val transformations while being transported toward the shore. By the time
they transform to post-larval stage they enter estuaries, where they grow
rapidly into subadults and migrate back offshore as they approach sexual
maturity.

The shrimp encounter wide temperature and salinity variation in their life
cycle as a result of their migrations during the cycle. Thus, a knowledge of
how temperature and salinity affect their growth and survival is of great
importance to understanding their life history and ecology.

There was at the time of this experiment great interest in commercial cul-
ture of the shrimp. From the standpoint of mariculture another important fac-
tor was stocking density in the culture tanks that affects intraspecific
competition.

Research Objective: The investigators wanted to know how water tempera-
ture, water salinity, and density of shrimp populations influenced the growth
rate of shrimp raised in aquaria and whether the factors acted independently
on the shrimp populations.

Treatment Design: A factorial arrangement was used with three factors:
“temperature” (25°C, 35°C); “salinity” of the water (10%, 25%, 40%); and
“density” of shrimp in the aquarium (80 shrimp/40 liters, 160 shrimp/40
liters). The levels chosen were those considered most likely to exhibit an ef-
fect if the factor was influential on shrimp growth.

Experiment Design: The experiment design consisted of three replicate
aquaria for each of the 12 treatment combinations of the 2 x 2 x 3 factorial.
Each of the 12 treatment combinations was randomly assigned to three aquar-
ia for a completely randomized design. The 36 aquaria were stocked with
post-larval shrimp at the beginning of the test. The weight gain of the shrimp
in four weeks for each of the 36 aquaria is shown in Table 6.13 on a per-
shrimp basis.
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Table 6.13 Four-week weight gain of shrimp cultured in aquaria at different lev-
els of temperature (T'), density of shrimp populations (D), and water salinity (&)

T D k) Weight Gain (mg)
25°C 80 10% 86, 52,73
25% 544, 371, 482
40% 390, 290, 397
160 10% 53,73, 86
25% 393, 398, 208
40% 249, 265, 243
35°C 80 10% 439, 436, 349
25% 249,245, 330
40% 247,277,205
160 10% 324, 305, 364
25% 352,267,316
40% 188,223, 281

Source: Dr. J. Hendrickson and K. Dorsey, Department of Ecology and Evoluti i )
University of Arizona. . - velutionary Bioloey.
The Statistical Model for Three Factors

The cell means model for a three-factor experiment with r replications of each of
the abe treatment combinaticns in a completely randomized design is

Viikl = Mijk + € (6.25)

i=12,..,a j=12,...,b k=1,2,...,c I=12, .. ,r

The cell mean ;50 expressed as a function of the factorial main effects and interac-
tions is
pije = p+ o+ B+ v + (@) + (@i + (B + (@B (6.26)

where p1 = pz_ is the general mean and o, /3, and ~y; are the main effects of 4, B
and C. The respective two-factor interaction effects are (), (y)ix, and (,6';) Akj
and the three-factor interaction effect is (@@v);;x. The definitions of main effeét;
and two-factor interactions follow from the derivations given in Equations (6.6) to
(6.8) for the two-factor experiment. The main effects are

o= —p L Gi=G, -0 ) n=FEr—5)
and a typical two-factor interaction is

BV =By —E.)— B~ (6.27)
=l — B —PrtH,
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The three-factor interaction occurs when the main effects and two-factor inter-
actions do not satisfactorily explain the variation in the cell mean deviations
(456 — 71 ). The three-factor interaction is the difference berween the cell mean
deviation and the sum of the main effects and two-factor interaction effects:

(afije = (uige — B — [0 + G5 + 1 + (@B + (@is + (570 (6.28)
= i — Tyj, — B — B T e, T 0 HTEp —

The Analysis for Three Factors

The sum of squares for treatments is partitioned into main effect and interaction
sums of squares as

S8 Treatment = SSA + SSB + SSC +SS(AB)
+ 8S(AC) + SS(BC) + SS(ABC) (6.29)

Keep in mind that the degrees of freedom for main effect sums of squares are
(@ —1), (b — 1), and (c — 1), respectively, for factors A, B, and C. The degrees of
freedom for two-factor interactions are the product of the main effect degrees of
freedom for the included factors. Likewise, the degrees of freedom for a three-
factor or higher interaction are the product of the main effect degrees of freedom
for the included factors, so that SS(ABC) has (a — 1)(b — 1)(c — 1) degrees of
freedom. .

The sums of squares partitions and analysis of variance table for the three-
factor shrimp growth experiment are shown in Table 6.14. The Mean Square for
Error in Table 6.14 is the denominator of the Fy statistic to test the nuil hypothesis
for any set of factorial effects with the fixed effects model. The Iy statistics in
Table 6.14 lead to the rejection of the null hypothesis for the 7'S two-factor interac-
tion, the TDS three-factor interaction, and all main effects. The cell and marginal
means for all factors are shown in Table 6.15.

Table 6.14 Analysis of variance for weight gain of shrimp cultured in aguaria

Source of  Degreesof  Sumof Mean

Variation Freedom Squares Square F Pr>F
Total 35 537,327.01

Temp (7) 1 1537600  15,376.00 5.30 030
Salinity (5) 2 06,762.50  48,381.25 16.66 000
Density (D) 1 21,218.78  21,218.78 7351 012
75 2 300,855.17 150,427.58 51.80 .000
™D 1 8,711.11 8,711.11 3.00 .0%6
SD 2 674.39 337.19 0.12 891
TDS 2 24,038.39 12,019.19 4.14 029
Error 24 69,690.67 2,903.78
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Table 6.15  Cell and marginal means of four-week weight gain of shrimp cultured

in aquaria at different levels of temperature (T'), density of shrimp populations (1)
and water salinity (S5) ’

Cell Means (;5.)
Density
80 160
Temperature Temperature

Salinity 25° 350 250 350 T

0% 70 408 71 331 220

25% 466 275 333 312 346

40% 359 243 252 231 271
T x DMeans 298 309 219 291
@ij..)

Tx 8 Means (3.} DxS Means.(g;'.jk.)
S S
T 10% 25% 40% 7, D 10% 25% 40% 7,

25° 71 399 306 259 80| 239 370 301 303
35° 370 293 237 300 160 | 201 322 242 255

' In.terpn.atations must be conditioned on some measure of statistical significance
in conjunction with the biological significance of the responses. Standard errors of
cell and marginal means are required for any subsequent statistical tests of specific

comparisons. The standard error for any mean is s; = /M SE/n, where n is the
number of observations in the mean. The standard error of the difference between

any pa.ir of means is s(3; ~¥,) = /2MSE/n. The estimated standard errors for
the shrimp culture experiment are shown in Table 6.16.

Some Preliminary Interpretations About the Factor Effects

The significance of the three-factor interaction indicates that temperature, salinity
and density are interrelated in their effect on the shrimp growth. The signiﬁcan;
three-factor interaction implies that the interaction between two factors is not con-
stant over levels of the third factor. Consider the interaction between density and
salinity separately at temperatures of 25°C and 35°C, as shown in the graphs of cell
means in Figure 6.6.

A comparison of the simple effects of salinity at each level of density and
temperature can be used to interpret the results. The simple effects of salinity are
best estimated as orthogonal polynomial linear and quadratic contrasts at each com-
bination of density and temperature. Sums of squares partitions computed for the
three factor interaction TDS are SS(T % D x Slinear) = 11,051 and
SS8(T x D x S quadratic) = 12,987 with P-values .063 and .045, respectively,

indicating the salinity quadratic coefficient is dependent on the levels of tempera-
ture and density.
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Table 6.16 Standard errors for cell and marginal means in a three-factor
treatment design

Temperature. a = 2 levels; Density: b = 2 levels, Salinity: ¢ = 3 levels

Main Factor Means

Temperature Salinity Density
MSE 7903.78 MSE \/m MSE \/m
V “rhe T \[ 18 rab 12 rac 18
=127 = 15.6 =127

Two Factor Marginal Means

Density by Temperature Density by Salinity
MSE 2903.78 MSE 2903.78
e 9 re 6
= 18.0 =220
Salinity by Temperature Cell Means
MSE 7903.78 \/FMS E _ \/ 7903.78
b 6 r 3
=220 =311
X 35°C
2 | 25°C 2 )

400
400

300

300

= £
8 8
g 8
o ~
® BD Density * BD Density
a
g © 160 Density E © 160 Density
o o
1" 15 20 25 a0 35 40 . 10 15 20 25 s 35 40
Salinity Salinity

Figure6.6 Weight gain of shrimp cultured in aquaria in a 2 x 2 x 3 factorial
arrangement of temperature, density, and salinity

The salinity quadratic coefficients were computed as orthogonal polynomial
contrasts for the four combinations of temperature and density from the cell means
in Table 6.15 following a template similar to that provided in Table 6.12. For
example, the quadratic coefficient for salinity at 25°C and a density of 80 is
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[70 —2(466)+359] _ 503 _
[E+(=2H+17) 6

with a standard ervor /2903.78/6(3) = 12.7. The 95% SCI estimates were com-
puted for the four coefficients based on the Bonferroni ¢ g5 424 = 2.70.

The 95% SCI estimates of the quadratic coefficients for salinity at 25°C are
(—118.1, —49.5) for a density of 80 and ( — 91, —22.9} for a density of 160,
while the estimates at 35°C are { — 17.5, 51.1) for a density of 80 and { — 44.6,
24.0) for a density of 160. Clearly the quadrature at 25°C is significant since the
95% SCI do not include 0 and not significant at 35°C since those intervals include
0.

6.7 Estimation of Error Variance with One Replication

Situations arise in research studies wherein only one observation is available in
each cell of a factorial arrangement. The experimental error variance cannot be esti-
mated with only one replication of the treatment combinations. The sums of
squares partitions for factor main effects and interaction are equal to the total sum
of squares for the observations.

Additivity describes the case when there is no interaction between factors.
Under additivity of factors the mean square partition for interaction can be used as
an estimate of experimental error. The additivity of main effects or absence of
interaction is not guaranteed, and some means of evaluating the presence of interac-
tion is required.

Error Variance Estimates with Two Quantitative Factors

The additivity of quantitative factors can be investigated with the interaction com-
ponents for linear and possibly quadratic regression partitions (Section 6.5). For
example, the sum of squares for linear x linear interaction can be partitioned out of
the interaction sum of squares with the assumption that the remaining sum of
squares for deviations from linear x linear interaction is experimental error. These
sums of squares for deviations from the linear x linear interaction would include all
higher orders of polynomial interaction such as linear x quadratic, and so forth,
The mean square for deviations from the linear x linear interaction can be used as
the mean square for error. The number of 1 degree of freedom interaction terms
that are partitioned from the interaction is a matter of judgment based on the num-
ber of degrees of freedom available for a reasonably powerful test for interaction
and main effects.

Error Variance Estimates with a Qualitative and a Quantitative Factor

The same approach can be used if one of the factors is qualitative and the other is
quantitative. In this case, the sum of squares for the interaction between the qualita-
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tive factor and the linear effect of the quantitative factor can be partitioned out of
the interaction sum of squares (Section 6.5). The remaining deviations’ sum of
squares can be used to estimate experimental error.

Error Variance Estimates with Two Qualitative Factors

If both factors are qualitative the problem is somewhat more difficult. Tukey
(1949b) gave a method for isolating a 1 degree of freedom sum of squares to test
for nonadditivity in a two-way classification with one observation per cell. The
term for nonadditivity in the linear model is a simple product of the main effects,
Aa;3;, where the parameter A represents the added parameter for nonadditivity.
The product of main effects is a multiplicative form of interaction, and if there is
nonadditivity from this specific type of interaction between the main effects, a; and
;. then A # 0. Under this mode! the cell means are a sum of the general mean, the
factor effects, and the product term, or

pi=F + (@ —E)+ @, — R+ M - B ), —8)

The sum of squares for nonadditivity requires a computation involving the
deviations of the A and B means from the grand mean, (7; — 7 ) and (§; — ¥ ),
respectively. The technique is illustrated with Example 6.6.

Example 6.6 Hearing Levels in Adult Males

The data in Table 6.17 are the percentage of men aged 55 to 64 with hearing
levels 16 decibels above the audio metric zero. The row categories were
sound levels in cycles per second (hertz), and the column categories were
seven occupational categories.

The required computations include

Pr=> @ — i) (6.30)
1=1
b
P=Y Pg,—7.)=17416 6.31)
7=l
and
a b
S @ -gy=694, > @;-7)=162 (6.32)
i=1 =1

The 1 degree of freedom sum of squares for nonadditivity is
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Table 6.17 Percentage of men with hearing levels 16 decibels above the audio
metric zero classified in a 7 x 7 factorial arrangement with one observation per cell

E
4 1 2 3 4 5 6 7% -y
1 21 68 84 14 146 79 48 66 —316
2 1.7 81 84 14 120 37 45 57 -325
3 144 148 270 309 365 364 314 273  —109
4 574 624 374 633 655 656 598 5838 20.6
5 662 817 533 807 797 808 824 750 36.8
6 752 940 743 879 933 878 805 847 46.5
7 41 102 107 55 181 114 61 94  —288

y; 316 397 314 387 457 419 385 7 =382
@;-7) —66 15 —68 05 75 37 03
P, 6719 7730 5046 7776 6850 7313 7192

Source: C. Daniel (1978}, Pattérns in residuals in the two-way layout, Techromeirics 20, 385-395.
Data originatly published in J. Roberts and J. Cohrssen (1968), Hearing Levels of Adults, Table 4, p.
36. U.S. National Center for Health Statistics Publications, Series 11, No. 31. Rockland, Md.

P2
S(Nonadditivity) = — Z
zl T Z:l ;-3
t= =
17,4162
= (6.944Y(162)

(6.33)

= 269.6

The analysis of variance for the data is shown in Table 6.18 with the sum of
squares for error partitioned into a 1 degree of freedom sum of squares for non-
additivity and a residual sum of squares.

Table 6.18 One degree of freedom partition for nonadditivity in the analysis of
variance for a 7 x 7 factorial with one observation per cell

Source of Degrees of Sum of Mean
Variation Freedom Squares Squcre
Rows 6 48,589.1 §,098.2
Columns 6 1,141.5 190.2
Error 36 1,444.7 40.1
Nonadditivity 1 269.6 269.6

Residual 35 1,175.1 336
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The null hypothesis of no nonadditivity is tested with the statistic Fp
= M S(Nonadditivity)/M S(Residual) = 269.6/33.6 == 8.02. The null hypothesis
is rejected with a critical region £y > Flgs135 = 4.12.

Several methods have been developed to ascertain the source of nonadditivity
in a two-way table. Daniel (1978} used a method based on the residuals in each of
the cells, y;; — ¥; — ¥ ; + ¥_. Technical discussions and examples of several other
methods and models for nonadditivity can be found in Johnson and Graybill
(1972), Bradu and Gabriel (1978), and Mandel (1971).

How Many Replications to Test Factor Effects?

Procedures were given in Section 2.14 to estimate replication numbers based on the
test for differences among treatment means with the Fj statistic. The values of &
(Equation (2.25)) can be applied directly to a test for differences among cell means
in the factorial arrangement with the null hypothesis Ho: pii1 = g1z = - = ptgs. In
this case, the factorial structure is ignored and the cell means model yi
= py; + e expressed in the effects model form is g6 = p + 735 - gz, where 7y;
is the effect of the ijth treatment combination in the factorial arrangement. Then

a &
PIPN
$2 = =L (6.34)
aba?
is used to estimate replication numbers from the charts based on the values of ;
required to be significant.
If replication numbers based on the factorial effects are required, the non-
centrality parameters are

2 b ﬁ? a

a b 2
}\a,:brz %, )\b=afrz E%, and A =TZZ;%@2E (6.35)
=

i=1 =1 i=l j

respectively, for A and B main effects and AB interaction. Then @ is determined

as & = /A/(1n + 1), where 1y are the numerator degrees of freedom for the £y
statistic.

Unequal Replication of Treatments

Missing data in research studies is inevitable. The design is no longer balanced with
a complete data set, and standard computing formulae no Jonger apply. Before the
advent of modern computing, a complete data set was most advantageous because
relatively simple formulae could be used for manual computations. Much effort
was put into developing methods for the analysis of variance sum of squares
partitions when there were unequal numbers of observations among the cells of the
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factorial arrangement. General statistical routines programmed to accommodate
known statistical theory have removed the computational burdens associated with
the analysis of incomplete data sets.

Orthogonality Is Lost with Missing Observations

The sum of squares for one factorial effect will convey some information about
other factorial effects when there are unequal numbers of observations for the treat-
ment combinations and the sum of squares partitions are computed in the usual
manner. This non-orthogonal relationship in the sum of squares partitions for the
analysis of variance requires us to consider carefully the estimates we use for
parameters in the model and the statistics we use to test the critical hypotheses in an
analysis of the study.

Orthogonal contrasts were introduced in Chapter 3 as contrasts that do not con-
vey information about one another. Orthogonality carries the same meaning with
observations in a factorial treatment design. When there are equal numbers of
observations on each treatment combination, the sums of squares in the analysis of
variance constitute an orthogonal partition of the treatment sum of squares. In Sec-
tion 6.4 the additive partition of S5 Treatment for a balanced two-factor experi-
ment was

S5 Treatment = SSA+ SSB + SS(AB)

and the sum of squares for one factorial effect did not convey any information
about other factorial effects,

The example data shown in Display 6.5 illustrate the complications introduced
by unequal treatment replication in a factorial treatment arrangement. The data in
the cells represent the average speed in excess of the posted speed limit traveled by
automobiles involved in 20 fatal accidents, 10 occurring in rainy weather and 10
occurring in clear weather. The factors for the study are W (Weather) and R (Type
of Roadway). Notice that 8 of the 10 accidents in rainy weather were on interstate
highways, whereas 8 of the 10 accidents in clear weather were on two-lane
highways.

Observation of the marginal means for weather indicates the average speed in
excess of the speed limit for rainy weather was slightly higher than that for clear
weather, 7, = 13 versus §, = 12. However, the observed cell means indicate an
entirely different result. The average speeds in fatal accidents in clear weather were
greater by 5 miles per hour than in rainy weather for both interstate (20 — 15) and
two-lane (10 — 5) highways.

The unequal treatment replications lead to contradictory results from cell
means and marginal means. An excess of accidents occurred on the interstates in
rainy weather and an excess of accidents occurred on the two-lane highways in
clear weather. Thus, the marginal mean for clear weather is biased downward by
the excess of accidents on the two-lane highways with overal! slower speeds, and
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Display 6.5 Unequal Treatment Replication in a 2 x 2 Factorial
for Speeds in Excess of Posted Speed Limit
Cell Means
Interstate Two-Lane  Sums Means
Rainy 15 5 130 13
7‘11=8 'r19=2 T1_=10
Clear 20 i0 120 12
ra1 = 2 Toa = 8 To = 10
Sums 160 90 250
r,=10 | ro=10 | r, =20 ¥y =125
Means 16 9

the marginal mean for rainy weather is biased upward by the excess of accidents on

the interstates with overall faster speeds.
The sum of squares for treatments with unequal replication numbers is com-

puted correctly as

SS Treatment = 8(15 — 12.5) + 2(5 — 12.5)* + 2(20 — 12,57 + 8(10 — 12.5)°
=325

The sums of squares for main effects and interaction computed incorrecily with
methods outlined in Section 6.4 are

SSW = 10(13 — 12.5)° + 10(12 — 12.5)*=5
SSR = 10(16 — 12.5)* + 10(9 — 12.5)* = 245

and
SS(WR) = 85 Treatment — SSW — SSR=325—-5— 245 =175

Inspection of the cell means and the sum of squares for interaction indicate an-
other contradiction in the usual analysis methods. The calculated sum of squares,
S§S(W R) = 75, indicates some interaction is present in the study. However, in-
spection of the cell means gives no indication of interaction. The observed simple
effect of weather is equal to 5 for both highway types. The sum of squares for inter-
action would be 0 if the sum of squares partitions were computed correctly.

The general principles for a correct analysis of factorial treatment designs with
unequal treatment replication are illustrated with the two-factor experiment on
durability of asphaltic concrete.
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Example 6.7 Asphaltic Concrete Durability Revisited Again

The exp_erlment on tensile strength of asphaltic concrete specimens in Exam-
ple 6.2 is used to illustrate the analysis of a factorial treatment design with
unequal replication of the treatments. For illustration, suppose specimens
were constru.cted with basalt or silicious aggregate types for the three knead-
ing compfictlon methods. Suppose some of the specimens were damaged pri-
or to testing, resulting in an unequal number of specimens being availali)le
among the treatments for tensile strength tests. The data with unequal repl;

tion numbers are shown in Table 6.19, e

Table 6.19 Teqsile strength (psi) of asphaltic concrete specimens for two
aggregate types with each of three kneading compaction methods

Compaction Method
Kneading
Aggregate
Aggregate
Type Regular Low Very Low Means (g, )
Basalt 106 93 36 =
108 101
98
Means (7,; ) 107.0 97.3 56 93.7
Silicious 107 63 40 .
110 60 41
16 44
Means (7,; ) 111.0 61.5 4.7 72.6
Compaction
means (7 ;) 109.4 83.0 453

Establish Estimators with the Cell Means Model

The cell means model can be used to establish the appropriate estimators for popu-

!atlon parameters and hypotheses that we are required to test. The cell means model
is

Yigk = fhig + €1k (6.36)

i=1,2.. 0 j=12,...b k=121

wheFe ti; is the cell mean for the ith level of factor A and the Jth level of factor B
ek I8 tl.1e nonga]ly distributed random independent experimental error with mean d
and vana;nce o*, and r;; is the number of replicate observations in cell (27). We will
assume there is at least one observation in each cell of th i .

e factorial a
that r;; > 0 for all < and ;. Tfﬂ“gemerlh v
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Least Squares Estimators for Cell and Marginal Means

The cell means can be estimated by the least squares method following the proce-
dures outlined in Chapter 2 for the cell means model. The estimators of the cell

means are the observed cell means

1 &

Ty =— Wik =i (6.37)
T =
and the estimator for experimental error variance is
_ 1 _
7' =5 = % (e — T3 (6.38)

N —ab

where N = Zry;.-
The estimates of the cell means for the tensile strength of the asphalt concrete

specimens are shown in Table 6.19, and the estimate of experimental error is
1 89.83

2o _ — 10702 + - + (44 — 41L.7)] = =11
s 14_6[(106 07.00% + - +{ L7y 3 1.23

The unbiased least squares estimators of the marginal means are

o _ 1 = I
P = Z fy; and gig= a Z)’-"ij (6.39)
i=1

and s (6.40)

The least squares estimates of the marginal means for the asphalt concrete speci-
mens and their standard error estimates are shown in Tabie 6.20.
For example, the least squares estimate of the marginal mean for the basalt

aggregate type is

- 1
iy, = 7(107.0+973 + 56.0) = 86.8

with standard error estimate

112301 1 1y 1
i 3z (—-’rf-i-—-)—].b

L
23 1

The observed marginal means, g; and 3 ;, shown in Table 6.19 do not have
the same value as the least squares estimates of the matginal means in Table 6.20.
The observed marginal means estimate weighted functions of the population means
where the weights are proportional to the number of replications in the cells. The

expected values of the observed marginal means are
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Table 6¢.20 Least squares estimates of the marginal means for tensile strength of
asphalt concrete specimens and their standard errors i

Standard
Mean Error
Aggregate ﬁi S=
Basalt 863 5
Silicious 71.4 ]l;
Compaction Iy 5
J i
Regular 109.0 ] ’;j“
L3
Low 79.4 1.53
Very low . 48 8 1 .93
1
B )= — ZTZ'J'#:‘J'
T3, =1
and
(6.41)
] a
BE@;)=— D rijt
4 =1

If the number of observations in the treatment cells of the study is proportional
to the frequency with which those treatment combinations occur in the]J oputatc') on
then the obse_rved marginal means provide the appropriate estimators f(i:r rt)he .
ginal means in the population. The proportional retationship of observation .
bers to. population frequencies is common in sample surveys Howevernutli?-
propomonal.relationship. would not be expected to hold for a desiéned experi}neni
s;oz?glgzrszlex: observational study, and the least squares estimates in Table 6.20

Hypotheses Unchanged by Unequal Treatment Replication

‘The hypotheses of interest in the factorial treatment design with unequal replicati
pu_n.'lbers are unchanged from those of interest with equ:l replication numbp ’ll";))n
!nltlal ralesearch question in the factorial treatment design considers the exisf:;‘ce ?f
mteraction between factors 4 and B. The interaction effect measures the diff X
ences between the simple effects of A at different levels of 2. The difference ;1"
tween levels i and k of A at levels 7 and m of B is the general form of interaction‘e-

(;U'ij - #’k}) - (P’im - ukm) = i — i — Pim o Pem

The null hypothesis of no interaction can be expressed in terms of the cell means as
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Hot pij — pig — phim + pimn = 0 foralls, 7, k, and m (6.42)

In the absence of interaction, the effect of the individual factors on the
response variable can be explored separately with tests of hypotheses about the
marginal means. The null hypothesis of interest for factor A is the equality of the
marginal means, or

Ho: =7y = (6.43)

I
=
&

and that for factor B is

Ho:py=pg=-- (6.44)

It
_;i_:i

Weighted Squares of Means for Tests of Hypotheses

Among the many methods put forth for analyzing factorial experiments with un-
equal replication only the method of weighted squares of means proposed by Yates
(1934) provides the sum of squares partitions to test all three hypotheses in Equa-
tions {6.42) through (6.44). A description of other methods and the hypotheses that
can be tested with them can be found in Speed, Hocking, and Hackney (1978). The
tests for equality of marginal means are of interest only in the absence of
interaction.

Computing Sum of Squares for Interaction from Full and Reduced Models

The sum of squares partition for interaction is determined from the principle of full
and reduced models introduced in Chapter 2. The full model expressed in terms of
the factorial effects is

Yijk = 1+ oy + G35 +(af)i; + e (6.45)

The solutions obtained from the least squares normal equations are used to compute
the sum of squares of experimental error for the full model as

a LT
SSEr =337 fyi — i — G — B; — (@B (6.46)
i=1 =1 k=1
Under the null hypothesis of no interaction the reduced model is
Yisw = i+ o + B+ e (6.47)

The solutions obtained from the least squares normal equations are used to compute
the sum of squares of experimental error for the reduced model as

a [ i —
SSE =3 3% lyp—H—a— B (6.48)
i=1 j=I k=1
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The sum of squares for interaction is computed as
SS(AB) = SS5E, — SSE; (6.49)

The mean square for experimental error is MSE = (SS5E;)/(N — ab), and
the mean square for interaction is MS(AB) = S5(AB)/(a — 1){(b — 1). The usual
Fy statistic, Fp = MS(AB)/MSE, tests the null hypothesis of no interaction in
Equation (6.42). The calculations are jllustrated in Appendix GA.

Weighted Squares of Means to Test Equality of Main Effects in the Absence
of Interaction

Tests of hypotheses can be conducted for the equality of marginal means of the fac-
tors if the test for interaction is not significant and it can safely be assumed there is
no interaction. The correct sum of squares partitions for the weighted squares of
means method to test the null hypotheses in Equations (6.43) and (6.44) are shown

in Display 6.6. The analysis is based on the sums of squares of the cell means
designated as the observations z;; = 7, .

Display 6.6 Weighted Squares of Means Sum of Squares Partitions
Factor A Factor B
SSA, = Y7 wi(F:, — T SSB, = Y5 v ; — Tpy)?
1 1] 1oa 177"
""f“[ﬁ?‘aa] =75 7]
Ty = 3. Wi / D¢ ws T = 0T 5 / Y
Hy oy =7y = =p, Hy Py=p, = =T,

The sum of squares partitions required by the weighted squares of means can
be computed by many statistical programs. However, the programs may have sev-
eral options for the type of sum of squares partitions that are computed for the
analysis. It is important that the correct options be used for the programs so that the
correct sum of squares is computed by the program,!

I'Programs used for analysis of variance will provide the correct sum of squares tor the weighted
squares of means. Instructions on the use of most programs will indicate if and how different types of
sum of squares partitions can be obtained. The correct sum of squares options for several well known
programs are

Program Sum of Squares

SAS GLM Type 1

SPSS MANOVA  UNIQUE

MINITAB GEM  Adjusted

BMDP 2v Default

Splus summary.20v(....ssType=3)
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The analysis of variance for the asphaltic concrete specimens tensile strengths
in Example 6.7 is shown in Table 6.21.

Table 6.21 Analysis of variance for tensile strength of asphaltic concrete speci-
mens with unequal replication of treatments with Yates® weighted squares of means

Source of Degrees of ~ Sum of Mean

Variation Freedom Squares Square F Pr>=F
13 10,963.21

};:ga:cgate 1 71045 710.45 463 27 .0(}((})

Compaction 2 6,806.45 3,403.23 303.07—’ .00

Interaction 2 953.45 47672 42.45 000

Error 8 89.83 11.23

Interpretation of the Exampie

The null hypothesis of no interaction between aggregate type and compaction
method is

Hy: pij — Pag = thim + Pim = 0 foralli,j, &, andm (6.50)

Interaction is significant since the statistic ' Fy= MS(AB)Y/MSE =
476.72/11.23 = 42.45, in Table 6.21, is significant with Pr > F' = .0_00. -
With significant interaction between aggregate type and compaction met ? 1f
will be necessary to look at the simple effects of one fac.tor at each of the levels o
the other factor to understand the nature of the interactlol?. Comparisons betwee.n
the cell means for aggregate type at each level of compaction method are shown 1n

Display 6.7.

Display 6.7 Bonferroni s Tests for Simple Effects of Aggregate
Type for Each Compaction Method

Compaction _ Standard t
Method Py — Hoj Error o
’ (=D
3| = =3. - 1.29
Regular 107.0 - 111.0=-4.0 \ﬁl.b[ > + 3 31

Low 973—-61.5=1358 \ﬁ1.23

L Skl BEPP S
Very low 56.0 —41.7 = 143 11.23[T+ | =3 .
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The £y statistics were computed for the contrast between aggregate types for
each of the compaction methods in Display 6.7. The critical value for the
Bonferroni ¢ statistic with three comparisonsis | #5 | > taes38 = 3.02. There is no
significant difference between tensile strengths of the basalt and silicious rock
specimens with the regular kneading compaction method. The tensile strengths of
the basalt specimens were significantly greater than those for the silicious rock
specimens for low and very low kneading compaction methods.

Tests for Marginal Means

The tests of hypotheses for equality of the marginal means for A and B ordinarily
are not considered when interaction is significant and would not be considered for
the current example. However, for the sake of illustration, the procedure is ilus-
trated for the case when no interaction exists and tests about the marginal means
would be of interest. The two hypotheses to test {or the asphaltic concrete example
are (1) no differences among the marginal means for aggregate type

Ho @ =70, (6.51)
and (2) no differences among the marginal means for compaction method
Ho! iy =Py =173 (6.52)

The sum of squares for the weighted squares of means method are shown in
Table 6.21. The statistic Fy = MSA/MSE = 71045/11.23 = 63.26 tests the
equality of marginal means for aggregate type. The statistic for the test of equality
among the marginal means of compaction method is Fy = MSC/MSE =
3403.23/11.23 = 303.05. Both of the statistics are significant with Pr > F = _000
in Table 6.21.

Some Comments About Missing Data and Missing Cells

A method was illustrated in this section to analyze the data from a study with un-
equal subclass replication in a factorial treatment design. The method provides the
correct estimators for population means and credible tests of hypotheses about the
factors. Other methods of analysis for the unbalanced factorial treatment designs
provide different tests of hypotheses about the factor effects.

Searle, Speed, and Henderson (1981) discussed five methods for calculating
sums of squares in the analysis of variance that were currently used in computer
programs. All of the methods give the same results for balanced data, but they can
yield different results for unbalanced data. Related articles by Hocking and Speed
(1975), Speed and Hocking (1976), and Speed, Hocking, and Hackney (1978) pro-
vide additional information on the computing methods and. the hypotheses that are
tested in the analyses by different computer programs. More extensive illustrations
of some methods, including that used in this section along with some of the

theoretical background, are found in Searle (1971, 1987) and Milliken and Johnson
{1934).
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All of the methods discussed in the context of the sum of squares partitions for
main effects and interaction provide inadequate tests of hypotheses about factorial
effects when entire cells of the factorial arrangement are missing. Under these
circumstances an analysis based on the cell means model is recommended by
Urquhart, Weeks, and Henderson (1973), Hocking and Speed (1975}, Urquhart and
Weeks (1978), and Searle (1987).

EXERCISES FOR CHAPTER 6

A chemical production process consists of a first reaction with an alcohol and a second reaction
with a base. A 3 x 2 factorial experiment with three alcohols and two bases was conducted with
four replicate reactions conducted in a completely randomized design. The collected data were

percent yield.

Alcohol
Base ) 2 3
1 91.3 899 893 8&8.1 89.5 B87.6
90.7 91.4 904 914 383 903
2 873 894 923 915 93.1 90.7
915 883 90.6 947 91.5 89.8

Somrce. P. R, Nelson (1988), Testing for interactions using analysis of means.
Technometrics 30, 53-61.

a.  Write a linear model for this experiment, explain the terms, and compute the analysis of vari-
ance for the data.

b. Make a table of cell and marginal means, and show their respective standard errors.

c.  Test the null hypotheses of no base x alcohol interaction effects. What do you conclude from
the test? What do you recommend as the next step in vour analysis?

d. Use multiple contrasts among cell means to help explain the interaction. For example, compare
the two bases for each alcohol.

e. Conduct residual analyses with a normal plot and then with a predicted plot; also conduct a
Levene (Med) test. What do you conclude?

A company tested two chemistry methods for the determination of serum glucose. Three pools of
serum were used for the experiment. Each pool contained different levels of glucose through the
addition of glucose to the base level of an existing serum pool. Three samples of serum from each
pool were prepared independently for each level of glucose with each of the two chemistry meth-
ods. The concentration of glucose (mg/dl) for all samples was measured on one run of a spectro-

photometer.
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Method | Method 2
Glucose Level I 2 3 ) 2 3
425 1384 1309 398 1324 1768
433 1444 180.5 40.3 1324 173.6
429 1427 183.0 41.2 1303 174.9

Source: Dr. J. Anderson, Beckman Instruments Inc.

a. lete a linear model for this f:xperiment, explain the terms, conduct an analysis of variance for
. ;fe dtata, a;‘nd compute the residuals, Is a transformation of the data necessary? Explain
) a transformation is necessary, compute i : alysi

if & trans ary pute the transformation for the data and the analysis of

¢. Test the hypotheses of no method x i i
glucose interaction effects. What do ?

Should you test for main effects? Why? you conelude:
d. ?repare @ _table of cell and marginal means with their respective standard errors.
€. Test the difference between method means for each level of glucose, and interpret the results

A sltudy of the effect of temperz}ture on percent shrinkage in dyeing fabrics was made on two
repl ications for each _of four fabrics in a completely randomized design. The data are the percent
shrinkage of two replicate fabric pieces dried at each of the four temperatures.

Temperature
Fabric 210°F 215°F 220°F 223°F
1 1.8,2.1 20,21 46,50 7.579
2 22,24 42,40 54,56 98,92
3 28,32 44,48 87,84 132,130
4 32,36 33,35 57,58 109,111

a. Write a linear model for the experiment, e i
. , explain the terms, and i
e & fear mod compute the analysis of

b, Test the null hypothesis of no fabric x temperature interaction.

c. Ez:nmndthe t(eimp.erature main effect sum of squares into 1 degree of freedom partitions for
ar and quadratic regression sum of squares, and test the null h i
: s otheses of -
dratic response to temperature. & no finearor qua
d. Pa;tmon the temperatun? x fabric interaction sum of squares into temperature linear x fabric
an .tempell'ature quadratic x fabric interaction sum of squares, and test the null hypotheses of
no Interaction for the respective partitions. '
e. Pr;epare a profile plot of the cell means versus temperature for each fabric, and interpret the re-
sults. For example, the following questions may be asked: “How does drying temperature af-

fect the fabric shrinkage?” “How does th i i i
. ? e relationship between shrink @
differ among the fabric types?” i nee and temperature

A‘n experlmen.t in soil microbiology was conducted to determine the effect of nitrogen fertility on
nitrogen fixation by Rhizobium bacteria. The experiment was conducted with fourb crops: alf}z’xlfa
soybeansl, guar, and mungbean. Two plants were inoculated with the Rhizobium and rc;wn in 2
Leonard jar with one of three rates of nitrogen in the media: 0, 50, or 100 ppm N. Four rgplicatici::\sa
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Leonard jars, were used for each of the 12 treatment combinations. The treatments were arranged
in a completely randomized design in a growth chamber. The acetylene reduction was measured
for each treatment when the plants were at the flowering stage. Acetylene reduction reflects the
amount of nitrogen that is fixed by the bacteria in the symbiotic relationship with the plant.

Crop
Nitrogen ~Alfalfa  Soybean  Guar Mungbean
0 26,11 635,26 03,01 08,09
09,12 39,43 04,04 22,12
50 0.0,00 06,06 00,01 0.7,04
0.0,00 03,08 0.0,02 03,08
100 0.0,0.0 0.0,0.1 00,02 0.3,0.1

0.0,00 0.1,00 00,00 0.0, 0.1

Source : Dr. |. Pepper, Department of Soil and Water Science,
University of Arizona.

4. Write a linear model for this experiment, explain the terms, and compute the analysis of
varjance.

b. Perform a residual analysis and determine whether a transformation of the data is necessary.
Transform the data if necessary, and compute the analysis of variance for the transformed data.

c. Test the null hypotheses of no crop, nitrogen, or crop nitrogen interaction effects.

d. Partition the nitrogen main effect and the nitrogen x crop interaction sum of squares into 1 de-
gree of freedom partitions for linear and quadratic regression.

e. Test the null hypotheses of no nitrogen linear or quadratic main effects and the null hypotheses
of no nitrogen linear or quadratic interaction with crops.

f  Make a profile plot of the cell means versus fevel of nitrogen for each crop, and interpret the
experiment. For example, you can ask the question, ““How does the addition of nitrogen to the
media affect the nitrogen fixation by the Rhizobium?" or “Ig the effect of the addition of nitro-
gen on nitrogen fixation the same for each crop?”

g. Note that two treatment combinations, alfalfa with 50 and 100 ppm N, have all observations
with a value of zero. This phenomenon is possible if the presence of a threshold level of nitro-
gen in the growth medium completely inhibits Rhizobium activity. How does this affect the
assumptions for the analysis of variance regarding homogeneity of variance? Do you have any
suggestions to accommodate this situation in your analysis of the data?

5. An agronomist conducted an experiment to determine the combined effects of an herbicide and an
insecticide on the growth and development of cotton plants (delta pine smoothleaf). The insecticide
and the herbicide were incorporated into the soil used in the containers to grow the cotton plants.
Four containers each with five cotton plants were used for each treatment combination. The con-
tainers were arranged in the greenhouse in a completely randomized design. Five levels (Ib/acre)
were used for both the insecticide and the herbicide to give 25 treatment combinations. The data
that follow are cell means for the dry weight of the roots (grams/plant) when the plants were three

weeks old.
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Herbicide
Insecticide 0 0.5 1.0 1.5 2.0
0 1220 72,50 5200 3625 29:25
20 8275 8475 7150 80.50 72.00
40 6575 68.75 7950  65.75 82.50
60 68.00 70.00 6875 77.25 68.25
80 57.50  60.75  63.00 6925 73.25

Mean Square for Experimentat Error = 174 with 75 degrees of freedom

Source: Dr. K. Hamilton, Department of Plant Sciences, University of Arizona

. i e
a COIllpUte l Flegl‘ee Oi |lBBdOIIl lEgleSSlOll sum Of S(]L]al s palt]tlons ﬁ)[ herbiCldB, iI‘lSBCthldB,
I I . 5 ()I Sq S. "lpu no h‘ y]IO i ‘ ] £y } |
| tion SUIIl. uare CO te ]g 1er pOl mid I an CublC l'ebreSSIO fO]‘
p theses fOl‘ eaCh 01 the pal‘tltlons and d I“l]‘“e t]le IU““ (]] the ()l IIU]lHal

C. IlanSfU [¢]) thO U]lal pO]y Illl'a] equatl'() an ¢ uat 0
lllSECthlde. El[l]Bl use a Sta"dald IEgIBSSlOIl pr()g] am or the tr aﬂSﬂ)lmatlon equatlons m Chap-

d.

Interpret the results from plots of the cell means or the estimated polynomial equation

An e i ili
an | X“?}?S?TZ wa; ;:-ondu:cted on th_e durability of coated fabric subjected to standard abrasive
poni.o ity 5:)(0/ ac‘t)orlai_des:gn Encluded two different fillers (F7, F5) in three different pr
portions (2 te:,tEd fo, 75/2;1) wt:th or without surface treatment (S, S»). Two replicate fabric spi,coi-
or each of the 12 treatment combinations in a ; |
- : completel i ig
The data are weight loss (mg) of the fabric specimens from the abrasion ]t)est ¥ randomized design

Surface and Filler Treatments

‘ S] ‘5'2
Proportion of Fifller I ¥ 2 a1 E
25% 194 239 155 1 32;
208 187 173 160
50% 233 224 198 129
241 243 177 oR
75% 263 243 235 155
269 226 229 132

Source: G. Box (1950), Probi i i
Do 6 362(_339_), roblems in the analysis of growth and wear curves,

. near m p p p y ri-
] ]
a \;Vllte a l] ca Odel fDI []Ie cxperiment, ex lal“ the terms a]ld compute dle analysis Of vl
b- I Ie]Jal"e & table Oi Cell and ltlalglllal means w 1[!1 t|lEl[ lCSpCCtWC Sta”dard Errors
C. IeSt the l’ll.l“ hy pOtheSlS 10’ all matn a"d nteraction C“BCtS.

Compute the 1 degree of freed i
] om regression sum of squares partitions for i
. ‘ o
and interaction between proportion of filler and the other factors. proportion of filler
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e. Test the null hypotheses for the regression partitions.
£ Plot cell means versus proportion of filler for the four treatment combinations of surface and
filler type, and interpret the results of your analysis.

7. A soil scientist conducted an experiment to evaluate a four-electrode resistance network to compute
electroconductivity (EC) of soil in specially constructed acrylic conductivity cells. The objective of
‘the study was to evaluate the relationship between measured EC and soil water salinity at different
water contents of soils. Three basic soil textures were included in the experiment since EC is spe-
cific to soil texture. The cells were constructed of acrylic tubing, 4-cm long by 8.2-cm diameter,
and packed with soil. Two cells were used for each treatment combination. The three soil types
were loamy sand, loam, and clay. The salinity of the soil water, three levels, was based on the EC
of the water at 2, 8, and 16 45 /m (decisiemens/meter). The water content of the soil was three lev-
els, at 0%, 5%, and 15%. The resulting experiment was a 3 % 3 % 3 factorial arrangement with two
replications in a completely randomized design. The EC values of the soil determined on the basis
of readings from the four-electrode network follow.

Salinity 2 8 16

Water T 0 5 I3 a5 I
Toamy 060 1.69 347 005 0.11 006 007 008 022
and 048 201 330 0.2 009 019 006 0.14 0.17

Loam 098 221 568 0.15 023 040 0.07 023 043
093 248 5.1 026 035 0.75 0.21 0335 035
Clay 1.37 331 574 0.72 0.78 2.10 040 072 195

1.50 2.84 538 0.51 111 1.18 0.57 0.88 2.87
Source: H. Bohn and T. Tabbara, Department of Soil and Water Science, University of Arizona,

a. Write a linear model for this experiment, explain the terms, and compute the analysis of vari-

ance for the data.

Prepare a table of cell and marginal means and their respective standard errors.

Test the null hypotheses for all main effects and interactions.

d. Compute the linear and quadratic orthogonal polynomial regression sum of squares partitions
for salinity and water and their interactions, including the interactions with texture. Note that
the levels of salinity and water are unequally spaced; therefore, the standard orthogonal poly-
nomial coefficients given in Appendix Table X1 do not apply. Some statistical computing pro-
grams will automatically compute the orthogonal polynomial coeflicients, given values for the
levels of the factors (for example, MANOVA in SPSS and 2V in BMDP). The following are
orthogonal polynomial coefficients that may be used to compute the orthogonal partitions:

o o

Water linear: —0.617 —0.154 0.772
Water quadratic: 0.535 - 0.802 0.267
Salinity linear: —0.671 —0.067 0.738
Salinity quadratic: p.465 —0.814 0349
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Five nickel rods of 1-mm diam i

. eter were put in a metallic ¢l i i

e ‘ ‘ . 1 amp in a suspension of i

B on oifO;)l vo}t tensmr.n was apphtad between the nickel rods and the vessgl containin?r[ltlfrlnmum
uminum oxide. The thickness of the aluminum oxide layer deposited on tahe Eiiiz-l

rods was recorded at three height positi
sitions .
microns. ght p of the five rods. The data are thickness of the deposit in

Clamp Position of Nickel Rod

Height 1 2 3 4 5
1 125 130 128 134 143
2 126 150 127 124 118
3 130 155 168 159 138

Source: H. Hamaker (1955), E ime ign in i
e L 267386 ), Experimental design in industey. Bio-

Write a li i i i
o 03 Lm;ar mtn])ldel for this experl‘ment, explain the terms, and state the model assumptio
you believe the model assumptions are valid for this experiment? Explain Pen®

Suppose the assumptions are reason i
ably valid. Compute the analysis of vari
Compute the 1 degree of freedom sum of squares for nonadditivi{y varianee for the data

Is the additive model for clamp position and height sufficient for this data?

oo o

An entomologist conducted an experiment on the drinking rate en i
: 7 . g ergetics of ho
Eﬂg:\l:yttl::eet:f;c;tst :nf; ambtxent temperature and viscosity of the liquid oﬁ energy Co:ll:::l;ei:?otl‘(l) l;j; t:hre-
commlled. the te S'pera ure levels were 20° C., 30° C, and 40° C. The viscosity of the liquid wa§
controlled yd h .ucr(')se'concentratlons, which were 20, 40, and 60 percent of total dissolved
n the drinking liquid for the bees. The entomologist recorded the energy expendedsf)c; \;f}e

bees as joules/second. Th i

. The data given below are for three replicati
- . - e i
combinations in a completely randomized design. plications far cach of the nine teeatment

: Sucrose %
Temperature °C 20 40

. ) 60

0 3.1,3.7,47 55,67,73 7.9,92,93

30 6.0,69,7.5 11.5,129,134 175,158,147
40 -7.7,83,95 157,143,159 19.1,18.0, 19.9

Source: Dr. 8. Buckman, USDA Bee Research Lab, Tucson, Arizona.

p g[ f eed g S101t p p (1]
(.‘-“"l ute I dﬁ e O || om regression sum Of Squﬂ[es dl htlons . N
iOI‘ temperature SUCrose

Test the null hypotheses fo iti
r each of the partitions, and determi
. , min i
r;:gresslon that adequately describes the response. ¢ e form of the pobmormial
ran: i ion i
insecs;igmm; tgethonhogonal polynomial equationi into an equation in terms of herbicide and
. Either use a standard re i i i
insec gression program or the transformation equations in Chap-

(:(] a [(]ll]e Int ucr as t]lat m [ Igljle 6 5 W ith tlle BStlIllated Ce“ means h S0

Interpret the results.
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Unequal Replication Numbers: A biologist incubated adrenal glands of rats in vitro under stimula-
tion by ACTH and measured steroid production of the glands. The glands were taken from the ani-
mals at four different stages of growth and were subjected to two different treatments. Glands from
four animals were used for each treatment combination. However, several laboratory analysis were
invalid, which resulted in unequal replication numbers for the treatments. The data given below are

steroid production per 100 mg of gland per hour.

Treatment
Stage 1 2
1 6.98, 6.58 8.62,9.40,9.20
2 6.07,7.16,6.34 9.42, 6.67, 8.64
3 538,7.31,6.65 744 496, 6.80, 7.61
4 7.02,9.23,7.32 7.17, 7.65, 6.52, 6.806

Sowrce: Dr. R. Chaisson, Department of Veterinary  Science,
University of Arizona.
a. Compute the analysis of variance in order to test the global hypothesis of no Stage by Treat-

ment interaction.
b. Compute the least squares means and their standard errors for marginal and cell means.

¢. Estimate the contrast between the two treatments for levels 1, 2, 3, and 4 of the growth stages
(ﬁlj. - ﬁgj‘ for j = 1,2,3, 4), and test the hypothesis of no difference at the .03 level of signi-

ficance between the two means in each case.
d How do the least squares means differ from the observed means?

Unequal Replication Numbers: Suppose the experiment on the chemical production process in
Exercise 6.1 had unequal replications among the six treatment combinations of the two factors,

Base and Alcohol. The data are given below.

Alcohol
Base 1. 2 3
1 90.7,514 89.3, 88.1 89.5, 87.6
90.4 88.3,90.3
2 87.3,88.3 94.7 93.1, 90.7
91.5 91.5

a. Compute the analysis of variance in order to test the global hypothesis of no Base by Alcohol

interaction.
b. Compute the least squares means and their standard errors for marginal and cell means.

c. Estimate the contrast between the two bases for levels 1, 2, and 3 of Alcohol Gy 5 ﬁgj_; j=
1,2,3), and test the hypothesis of no difference at the .05 leve! of significance between the two

means in each case.
d.  How do the least squares means differ from the observed means?
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6A Appendix: Least Squares for Factorial Treatment Designs

Equal Treatment Replication

ghe: s1:jm of squares partitions for the data from a factorial treatment design can be

ergre; from solutions to the least' squares normal equations for a factorial effects
model. The full model for a factorial treatment design with two factors will be used
to illustrate the derivation.

For the sake of simplicity in notation the full model is written as

Yijk = 4+ o; + G5 + v+ e {6A.1)

i=1,2,...,a j=1,2,...,b k=1,2, ... .7

wh(?re 7 i§ the general mean, «; is the effect of factor A, 3; is the effect of factor B
ij 18 the lntferaction effect, and e, is the random independent experimental error1
The 1nteraf:tlon term («f3);; used in the main body of this chapter has been repla d
by -i; to simplify the notation for the presentation in this appendix. Pre

. .Tl}e least squares estimates for the parameters in the full model are those that
minimize the sum of squares for experimentai error

a

] r
Q= Z Z Ze?jk =
=1 k=1

p} :

a b T
Z Z (ije — p— oy — B — ')'ij)g (6A.2)
=1 j=1 k=1

The normal equations from the minimization include one equation for u and one

equation for each of th i :
Y1112y -+ +Vab '[?he niri;?l(:lozal i'ff“ts, o sbined fron bo Do B g
derivaﬁ’v ) s Yab- quations are obtained from the following set of
] 5 o
Em LB Wik — o= B ) =0
9 by
£ j%(yzjk—#—ai“‘ﬁj—’h‘jf:ﬁ i=1,2,...,a
F) (6A.3)
35, ?%(yijk—#—m—ﬁj—’ﬁjf =0 j=2,3,...,b
9 2
v Dy — -~ B — ) =0 i=12,..,a
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Simplifying, the set of normal equations fo solve is

p abri+ b'r%} &+ ar? a;+ rEiEJi]’zfij =y

o brﬁ+br&i+rﬁﬁj+r$ﬁ5j =y i+=12,...,a
’ ! (6A.4)

Bi: a'f'ﬁ'l‘T%ai‘*'m‘ﬂj*'T??ij:y.j. i=12....,b

Yijt M4 rR B ATy =y 1= L0

i=1,2,...,b

Upon close inspection the a equations derived for the factor A effects sum to
the first equation for y; the b equations derived for ti_le factor B etfec.ts sum to the
first equation for u as do the ab equations for interaction; the 7;; c_equatlons summed
over the j subscript will give the o equation; and. the 7;; equations summ'ed over
the 4 subscript will give the §; equation. These linear df?pendenaes require con-
straints imposed on the estimates to provide a unique solution to the F:quatlons. Any
constraints that lead to a solution will suffice. One set of con§tra1nts cor/n\monly
used are the sum-to-zero constraints. The sum-to-zero constraints are Lo =0,

T8 =0, 2F,; =00 =12.,b) and D49, =0G = 1,2,... ,0).
With the constraints, the equations are

e abri =y..
oyl brii + bré; = Y. i=1,2,...,¢
~ ] {6A.5)
B;: arfi +arf; =y i=1,2,....b
Vije rﬁ+T&‘i+rﬁj+r’f“}'ij=yij, t=12,...,u
i=1,2,...,b
The solutions are
- Y. _
= —- =1
» abr Y.
ai=&:_lﬁ=§z_?m 7'=1121 y &
;ﬂ L3 (6A.6)
B.="2—-p=9,7 = Ly )
pi=—l—B=Y5 U J
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The estimate of the sum of squares for experimental error is obtained with a
substitution of the estimates 7i, ai,ﬁj, and9,; into Equation (6A.2) as

SS5Ey = ??% (Yigpe — T — —Ej _?Yij)g = %?% (Wijx — @1’3})2 (6A.7)

The difference between the total sum of squares and SSZ; is known as the re-
duction in sum of squares due to fitting the model and is sometimes written as
Rip,er, 3,7v). With equal replication for all treatment combinations the sum of
squares for each factorial effect can be derived from the computation used to com-
pute A(p, a, 4, 7). The reduction in sum of squares due to fitting the full model is

b

73 b u
Rip,o, B, =Ty + Y @i+ Bi+ D> Ty (6A8)
i=1 =1 =1

i 7=

For balanced data with equal replication numbers for each treatment combina-
tion, the sum of squares partitions for the analysis of variance can be taken from the
individual terms in Equation (6A.8} as

N %
CF=jpy. = .

55A = Za: i, = bTi @, - 3.0
i=1 =1

b b i (6A.9)
SSB=Y By =awrd @; —y.)
=1 =1
Q b a [
SS5(AB) = Z Fi¥is. = T'Z Z @i — T — T+ 7.
=1 =1 =1 j=1

The sum of squares partitions shown in Equation {6A.9) are those shown in
Section 6.4. They may be derived from considerations of full and reduced models.
For example, the sum of squares for interaction SS{AB) can be found as the dif-
ference between the experimental error sums of squares for the reduced model

without the interaction terms and full model with interaction terms included. The
models and sums of squares are

Full Model:  yi = g+ o + 5, + vi; + e with SSE;
Reduced Model:  yijn = p+ o + B + e with SSE,

The interaction sum of squares is found as SS(AB) = SSE, — S5Ey, which is
E,-Ej"?ijyij. [the same as the last term shown in Equation (6A.8)).

The equivalence of SSE,. — SSEy to ;L7555 can be shown by solving the
normal equations for the reduced model and computing the reduction in sum of
squares due to fitting the reduced model as E(u, o, #). The normal equations for
the reduced model! are obtained from those for the full model in Equation (6A.5) by
removing the equations for -v; and the 5;; terms in the remaining equations. The
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solutions for 7, @;,and /ﬁj w
in sum of squares due to fitting the reduced model will be

1} b
R, o, B) =Tiy...+ 9 _ i + > B
i=1 =1

ill be those shown in Equation (6A.6). The reduction

(6A.10)

The difference between R{u,a,5,7) and R(p, o, 3) is seen to be X5

and, therefore, the differences between the sums o
of the two models will be equivalent to the same qu

SS(AB) = §S5E, — SSEf = R("biaﬂﬁi’y) - R()’.L,Of, 16)

The sums of squares

Unequal Treatment Replication

The derivation of the interactio
in the factorial treatment design is demonstrated with th

example shown in Table 6A.1.

f squares for experimental error
antity. That is,

(6A.11)

SSA and SSB can be derived in a similar fashion for
balanced data, or SSA = R{p, @) — R(#) and SSB = R(y, 8 — B(w).

n sum of squares with unequal treatment replication
e simple 2 x 2 factorial

Table 6A.1 Example data fora2 x 2 factorial with unequal treatment replication

B
! 2 Yi.
] 6,5,3 2,4 20
A Ty =2 \ 7'1'2=?. ’J"1.=5
2 54 3 12
7‘01:2 ' Toa = 1 T‘2.=3
v 23 9 32
r1=23 T4 =3 r.=23%
Full Model

The full model normal equations for the
rived by the methods shown at the beginning 0
the parameters in the equations will reflect the une
eral, the equations will be

example data in Table 6A.1 are de-
f this appendix. The coefficients for
qual replication numbers. In gen-
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- N a b " a b
wo Np+ Z Gt Y Bt Y Y A=
=1 =1 =1 31 )
b b
ap T+ Y ruf;+ Z Tif¥i; = Yi.

=1 =1

a
@
By v+ ; T+ T8 Y iy = Vi

=1
Yt Tl T8+ Tl + iy =

The normal equations for the data in Table 6A.1 are

56.:1 + 38 + 5?1 3By + Fy, ¢ 2%, + 2y, + A
56, + 381 + 28, + 3y o+ 2, N =
X + 3@, + 2@ + B, + + Wyt Ay =
+ 36 + 28, + 58, + 3, + 2:;(:,1 : =

+ 2@ + o + 38, + 2y - 7
+ 3& + 3B, + 3, " =
+ 2& ~ + 232 + 2y =
+ 2a; + 26, + 2y =

+ & + ﬁg ‘ R

consfrzl_cis ”there are linear dependencies in the equations the “sum-to-zero
ints” can be imposed on the equations to obtain a solution. Th i
cor . the constraints
G +@=0,0+ By=0,F,+ T+ F12=0, G+ Fu =0
Far+ T =0, and Fpy + Fpp =0

The solutions to the equations after the constraints are applied are

- 91 1 1 .
“_' ) o] = — —_ — — —_ 5 19
24 1 24:“2 24? ﬁl—ﬂ, '82= —.EE
- 1 1 1
T = —, B = M = _ . 1
1= 5 T2 340 1= "oz Y= 53

The sum of squares for experimental error can be determined with
_ 2
SSEf - %:%:% yijk - R(F‘t , ﬁ: 'Y)

where

32
20
12
23

14

L
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Rty s o) = iy, + S8+ T+ 5T

The calculation for R{g, &, 3,7} 18

R(s, o B, 7) = By, + Gy, + Goga. + Brya+ By
+ Ay, + Frathz, + Farl21. + Tz

= 514[91(32)+ 120) + (= D(2) + 19 + -+ + (= DO+ 1G)

= 132.833

Given Eyfjk = 140, the sum of squares for experimental error from the full model

15
SSE; = 140 — 132.833 = 7.167

Reduced Model

The normal equations for the reduced model without the 7 interaction terms
are obtained by eliminating the equations for the vy and eliminating the 7;; terms
from the remaining equations shown for the full model. The equations for the re-
duced model are

8 + S& + dag F 5/.531 + 3A2 = 32
SE+ 5o + 36 + 2B, = 20
35 + 3Gy * 6, + By = 12
Spo+ 3w v 28t 55, =B
o+ 2t G v 36 =9

The sum-to-zero constraints are &y +Gy=0and 3, +8,=0. The solutions
are

3 . 45 . 45

A_212 ,‘_3 o~ ﬁ_ ﬂ
fi= g M= ge M7 T3 1T 56’ TP 56

The reduction in sum of squares due to fitting the reduced model is

Ry, o, f)Y = fy.. + Gy, + Gaya. t Bly.l. + Bgy.z.

- 515[212(32)4— 3(20) + (- 3)(12) +4523) + (= 490}

= 132.821

APPENDIX 23}

T .
he sum of squares for experimental error for the reduced model is

SSE, = 2 —
%}%}%yi}k Rp,o,8) =140 — 132,821 = 7.179

The sum of squares for interaction is

SS(AB) = R(p,o,3,7) — Rilp, o, 5) = 132.833 — 132.821 = 0.012
S5(AB) = SSE, - SSEf =7.179 — 7.167 = 0.012

Main Effect Sums of Squares

Tests of equality for margi
- ginal means for A and B, Hy: i, =1

fests : . . , Ho: @y =, and Hy:
ﬁ{ ..13 me;: hz(; dml tt‘he gbsence of interaction require the sums of squaresI partﬁittgi'ons fr 0
o 0 welghte.d squares of means (Yates, 1934). Some computer pro s
pOth:;rsnFe:ttee (;h; rtehqulred SIllcms of squares were indicated in Section 6 9pTI;g;ak:;S

y the sum of squares partition for i g .
A . ! : a main effect depends
th: i::lﬁm?'tlonal .techmque use'd in the least squares estimation prﬁcess %:tazﬂf OI;
ults from different techniques can be found in Hocking and Spe:ed (]9’5/’50)

Speed al'ld HOCki]‘lg (1 9 ; 6) S eed king b 9 J
] 4]
, | ( ]). p Hoc mg, and Hackne (1 8), and Sear]e,
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