5 Experiments to Study Variances

In this chapter, the statistical model for research studies about the variances of
populations is introduced. Knowledge about the assignable causes of variation is
useful for improving manufacturing processes, improving the genetics of crops and
flivestock, enhancing quality control in the health industry, and designing research
studies. The objective is to decompose the total variance into identifiable
components,
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The meat storage experiment from Chapters 2 and 3 included four specific treat-
ments with no expressed interest in any other packagings for the experiment. Thus,
the complete treatment population of interest consisted of the four packaging
methods.

Each of the four packaging methods could be duplicated if the experiment was
repeated. Under these circumstances, the statistical models used for the studies are
referred to as fixed effects models, and the inferences are restricted to the particular
set of treatments in the study.

There are other types of research studies in which we want to identify the ma-
jor sources of variability in a system and estimate their variances. By nature of (1)
the research objectives, (2) the treatment structure, (3) the experimental protocols,
and (4) the type of inferences made from the observed results, the effects in the
model are considered to be random effects, and the statistical models are referred
to as random effects models. The following example iltustrates a system in which
knowledge about variability in identifiable components of an industrial process can
be used to improve the process product.
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Example 5.1 Castings of High Temperatare Alloys

A metal alloy is produced in a high-temperature casting process. Each casting
is broken down into smaller individual bars that are used in applications re-
quiring small amounts of the alloy. The tensile strength of the alloy is critical
to its intended future use.

The casting process is designed to produce bars with an average tensile
strength above minimum specifications. Some variation in tensile strength
among the bars is acceptable when only a small proportion of bars do not
meet specifications (Figure 5.1(a)). However, excessive variation results in an
unacceptable proportion of bars that do not meet specifications (Figure
5.1(b)).

T
toow t o
minimum minimum
(a) acceptable variation {b) unacceptable variation

Figure 5.1 Acceptable (a) and unacceptable (b) variation in tensile strength

Two components contribute to the total variation in tensile strength of the
manufactured bars: variability among fabrication castings and inconsistencies with-
in the casting process that affect bars from the same casting, Maintaining control
over the variation requires knowledge of the variability contributions by each part
of the process.

An experiment was planned to isolate the variation in tensile strength due to
the effects of different castings from that attributable to inconsistencies within the
same casting.

High-temperature castings of the alloy were taken from three randomly select-
ed fabrications conducted in the same facility. Each casting was broken down into
individual bars. Destructive tensile strength measurements were obtained on a
random sample of 10 bars from each of three castings. The tensile strength data for
each of the 30 bars in pounds per square inch (psi) are given in Table 5.1.

The three castings used in the study represent a sample of the potential popula-
tion of castings that could be produced in the facility. The investigators were inter-
ested in the variation in tensile strength among castings produced by the facility;
thus, the concern was not with the three specific castings in the experiment.

The investigators considered the castings only a random sample of three from a
population of castings produced by the facility, The effects of the castings will be
random effects since they are randomly selected from a potentially infinite popu-
lation of castings. The inferences will extend to the population of castings that
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Table 5.1 Tensile strengths (psi) of bars from three separate castings of a high-
temperature alloy

Casting
! 2 3
88.0 859 942
88.0 88.6 91.5
94.8 90.0 92.0
90.0 87.1 96.5
93.0 85.6 05.6
89.0 86.0 93.8
86.0 91.0 92.5
92.9 89.6 932
89.0 930 96.2
93.0 87.5 92.5

Tource- G. 1. Hahn and T, E. Raghunathan {1988), Combining information from various sources: A
prediction problem and other industrial applications. Technometrics 30, 41-52.

conceivably could be produced in the facility. Likewise, the individual bar_s are a
random sample of bars possible from a single casting, and their effects on 'tensile
strength are random effects.

The observed tensile strength of a particular bar (y) differs from the mean of
the process (u) by some overall error, § =y — p. The components of the overall
error are illustrated in Figure 5.2. The overall error is the sum of two components,
§ = 6, + 6, where &, is the error component for castings and 6 is the error com-
ponent for bars in a casting.

Casting variation

5]

/ Bar variation

A "~

— Sy—»

Casting mean

e B>y

Figure 5.2 Two components of error in the metal casting process
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Other Examples: Another typical study with random effects involves the inheri-
tance of quantitative traits, such as grain yield in cultivated plant species.
Many genetically distinct families of the crop are developed in a plant-breeding
program. The families represent a random sample of potential families that can be
developed by the plant breeder. The progeny of each family are regarded as a ran-
dom sample of the progeny possible from the family. The plant breeder wants to
partition the total variation into the separate contributions from the families and the
progeny.

Clinical medical laboratories routinely participate in interlaboratory studies on
the variability of assay results requiring random effects models for the statistical
analysis. At regular intervals samples from a large homogeneous pool of serum are
sent to a large number of laboratories for analysis. The participating laboratories
and the samples sent to them represent a random sample of the potential popula-
tions of laboratories and serum samples. The investigators want to know if there is
significant variation in assay results among the laboratories.

5.2 A Statistical Model for Variance Components

A suitable model to identify the sources of variation for the random effects in the
experiment on casting high-temperature alloys is

Yij = f+a; ey (5.1)

i=1,2,...,t §=12,..,r

where 4 is the process mean, the a; are the random casting effects, and the e;; are
the random error effects for bars within castings. The effects e;; and a; are assumed
to be independent of one another.

The e;; error effects are assumed to be a random sample from a population
with a mean of 0 and variance o2. The random effects for the groups (a;) are as-
sumed to be a random sample from a population with a mean of 0 and variance org.
If 2 = 0, then all group effects are equal, but if ¢2 > 0 there is variability among
the group effects. Since the group effects in the experiment are only a sample from
a larger population of effects, the differences among the specific group means,
1t + a;, are of no particular interest. The variance of the distribution of group ef-
fects, o2, is the focus of interest with random effects.

The variance of an observation, orf,, may be expressed as the sum of the two
variances, or o2 = 02 + o2, The variances o2 and o> are called components of
variance, and the model in Equation (5.1) often is referred to as a variance
components model. In the plant-breeding study the variance component among
groups (o2) represents genetic vatiation among families, and the plant-breeder may
be interested in the ratio of this genetic variation to the total variation (0'3). The

engineer may use the estimate of aj to compute percentile values for the
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distribution of tensile strengths of the bars when they are to be used in a critical
application.

An outline of the anatysis of variance for the observations is shown in Table
5.2 with the expected mean squares for the Among Groups and Within Groups
mean squares. The terms Among Groups and Within Groups will be used in place
of Treatments and Error for the sources of variation to distinguish the random ef-

fects model from the fixed effects model. The computations for the sums of

squares for Among Groups and Within Groups are the same as those for the Treat-
ment and Error sums of squares given in Chapter 2 for the fixed effects model.

Table 5.2  Analysis of variance for the one-way classification with expected mean
squares for the random effects model

Source of Degrees of Sum of Mean Expected
Variation Freedom Squares Square Mean Square
Total N-1 SS Total

Among Groups t—1 5SA MSA o2 + ol
Within Groups N-t SSwW MSW o2

5.3 Point Estimates of Variance Components
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The random effects of the model are assumed to have a normal distribution.
Given the assumption of normally distributed effects, the significance of the
Among Groups component of variance can be tested. The null and alternate hy-
potheses are Hp: o =0 and H,: ol >0, respectively. The test statistic s
Fy = MSA/MSW, and the null hypothesis is rejected at the a level of signifi-
cance if Fy > Fy o1y v—e).

The analysis of variance for the tensile strength data in Table 5.1 is shown in

Table 5.3. The estimate of the components of variance for bars within castings is
the mean square for Within Groups, or

G = MSW =582
The estimate of the Among Groups component of variance is

2 _ (MSA-MSW) _(73.94-582)
@ T - 10 -

6.81

The estimated total variance of an observation on temsile strength is ’&3 =
T+ =6.81+582=1263,

The Fy ratio to test the null hypothesis Hy: 02 =0 is Fy = MSA/IMSW
= 73.94/5.82 = 12.71. The null hypothesis is rejected with a probability of ex-

cF:ed.ing Fy =12.71 equal to .000 (Table 5.3). The castings variation contributes
significantly to the variation in the tensile strengths of the alloy.

The analysis of variance method is used to estimate the variance components. The
analysis of variance is computed as if the model is a fixed effects model, and the
expected mean squares are derived under the assumption of the random effects

Table 5.3  Analysis of variance for tensile sirengths of bars from three castings of
a high temperature alloy

model (Table 5.2). The observed mean squares are estimates of the expected mean Source of Degrees of  Sum of Mean
squares, or Variation Freedom  Squares Squares F Pr>F
MSA =57 + 15" Total 29 304.99
Among Groups 2 147.88 73.94 12.71 .000
and (5.2) Within Groups 27 157.10 5.82
MSW =7

The analysis of variance estimators of the variance components are determined

5.4 Interval Estimate i
by solving Equations (5.2) for the two unknowns. The solutions are . s for Variance Com ponents

33 — MSW Confidence interval estimates can be computed for both variance components. The
exact 100(1 — «)% confidence interval estimator for o2 is
and -3
MSA— MSW S <ot T >
3= ( —T ) A e B (5.4)

wh«?re A= xi 12,(07-1) and B = X?l—a 2 (Nt} A and B are values of the chi-square
variable exceeded with probabilities /2 and (1 — «./2), respectively. Values of
chi-square are found in Appendix Table III.

The estimators in Equations (5.3) are unbiased and they have the smallest vari-
ance of all estimators, which are both quadratic functions of the observations and
unbiased estimators of o2 and 2.




154 CHAPTER S EXPERIMENTS TO STUDY VARIANCES

An interval with at least 100(1 — 2a:)% confidence for o2 is

SSA(l-F./F)  ,  SSAQ — F/F)
—_— < —

rC D
where C = Xi/?,(t—l)’ D= X?l—a;"z),(t-—l)’ and Fy = MSA/MSW is the observed
Fo statistic (Williams, 1962). The quantities F, = Fu_1)v-s and
Fy = Fy—ao-1),(n—¢) are values of the F' variable exceeded with probabilities

/2 and {1 — /2), respectively.!
Given SSW = 157.10, x%; 57 = 40.1, and x%; 5, = 16.2, the 90% confidence

interval estimate of o2 from Equation (5.4) is
2

5710 _ , 15710
201 %" 162

(5.5)

3.92 < g2 < 9.70

With S5S5A=147.88, r=10, Xi,gsez = 7.38, X_2975,2 =0.05, fp=1271,
Fogsaor = 4.24, and Flps 907 = 0.025, the 90% confidence interval estimate of af
from Equation (5.5) is :

- A% 12
147.88| — 1270 | = 52 - 147.88 | ——.121L
T8 Toagy | <% 10(0.05)

1.34 < o < 295.18

The interval estimates for variance components will be quite wide when mean
squares have small degrees of freedom. More groups of castings would provide a
more precise interval estimate of o2,

Interpretations of the Variance Components

The mean tensile strength for the experiment was 7 = 90.9 with standard error

estimate
MSA 73.94 .
S = =157
A - 30 pst

The estimated variance of an observation on tensile strength on bars is

6‘3 =32 +52 = 12.63 with a standard deviation of ¥, = ,/12.63 = 3.55 psi. The
variance comporent estimates isolated the different sources of variation in the
casting process for alloy bars: The variance among castings accounted for 54% of

the variation, and the variance among bars within castings accounted for 46% of

! The value of F{;_,) cannot be read directly from Appendix Table IV, but its value can be determined
from the relationship £, v (1-0) = 1/ Fayin 0 ,
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the variation. The engineer can reduce the standard deviation of Ty = 3.55 psi by
identifying and adjusting factors in the casting process that increase variation. The
variation among castings can be caused by inconsistent alloy mixtures or tempera-
ture settings from casting to casting. The variation among bars within castings can

be caused by inconsistent cooling conditions or variations in the tensile strength
measurement procedure,

5.5 Courses of Action with Negative Variance Estimates

By definition, a variance component is positive. However, estimates of a2 using
Equation (5.3) may be negative. There are several suggested courses of action in

the case of negative estimates (Searle, 1971); Searle, Casella, & McCulloch
(1992),

1. Accept the estimate as evidence of a true value of zero and use zero as the
estimate, recognizing that the estimator will no longer be unbiased.

2. Retain the negative estimate, recognizing that subsequent calculations using
the results may not make much sense.

3. Interpret the negative component estimate as indication of an incorrect
statistical model.

4. Utilize a method different from the analysis of variance for estimating the
variance components,

’

5. Collect more data and analyze them separately or in conjunction with the
existing data and hope that increased information will yield positive estimates.

Searle (1971, Chapter 9) and Searle et al. (1992, Chapter 4) discuss several meth-
ods of estimation from the extensive literature on variance component estimation,
as well as these other actions, in greater detail.

5.6 Intraclass Correlation Measures Similarity in a Group

The intraclass correlation coefficient is a measure of the similarity of observations
within groups relative to that among groups. When the similarity of the observa-
tions within groups is very high, o2 will be very small. Consequently, o2 will be a
larger proportion of the total variation (o, = 0% 4 o2). The intraclass correlation,
defined as the ratio

- (5.6)
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is used in vartous disciplines. Applications arise in genetics studies with various
measures for the heritability of quantitative traits, in reliability studies to measure
the similarity of products from the same machine or process, in medical studies to
measure the repeatability of successive measurements on patients, and in survey
sampling to measure the similarity of responses among people contacted by the
same interviewer (Koch, 1983).

The analysis of variance was introduced by R. A. Fisher in the 1920s with an
intraclass correlation model (Fisher, 1960}. The mode! assumes all observations
(y:;) have the same mean () and variance (¢%), and any two members of the same
group have a common correlation (p7). With this mode! the expected mean squares
for the analysis of variance in Table 5.2 are

E(MSA) = {1 +{r— Do}
and (5.7
E(MSW) = o*(1 — pp)

The estimators of p; and o? are found by equating the observed mean squares'to
the expectations shown in Equation (5.7) and solving for the unknowns. The solu-
tions are

2 {MSA+(@r—1MSW}

G =

r
and (5.8)

_ (MSA-—MSW)
PI= IMSA+(r— DMSW}

The estimate of the intraclass correlation can have a minimum value of — 1/(r — 1)
and a maximum value of 1 (Fisher, 1960} because the expected value of MSA
must be equal to or greater than zero.

The 100{1 — a)% confidence interval estimator for p; is

F(;—Fu FD_‘FI

FiG-nh 7~ ¢

" R+0-DA
where Fu = Faf2,(t—1),(N—t), .F[ = F(l—a/E),(t—-l},(N—t)s and FD = MSA/MSW. The
interval may be used for testing the hypothesis Hq: pr = 0, where the hypothesis is
not rejected if the interval includes zero (Koch, 1983).
The estimate of the intraclass correlation for castings of high-temperature al-
Ioys is
(73.94-5.82)

By = =0.54
P1= 17394 1 9(5.82)}

With Fy = 12,71, Fso07 = 3.35, and Fgg097 = 0.051, the 90% confidence inter-
val estimate is
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(2.71-335) (1271 ~0051)
(1271 +9335)) 7 = (1271 + 9(0.051)]

and
0.22 < pr < 0.96

The interval does not include zero, and a null hypothesis of zero intraclass correla-
tion among the bars within castings is rejected.

The interpretation of intraclass correlation can be made on the basis of the ratio
in Equation (5.6). The numerator (o2) reflects the variation peculiar to the
differences among groups, whereas the denominator variance (¢2 + ¢2) pertains to
individuals sampled randomly from the universe of all groups without regard to
group boundaries.

If the intraclass correlation is large, all the individuals in the same group are af-
fected alike by the random effect (a;) common to that group. Thus, the similarity
among individuals within groups will be greater than that among individuals from
different groups, and o2 will be small relative to o2,

On the other hand, a small intraclass correlation indicates dissimilarity among
individuals within groups with o7 large relative to o2. For example, competition
among plants or animals within a group for nutritional resources could lead to
growth disparities within a group. This could happen if more vigorous or aggres-
sive individuals took a greater part of the nutritional resource.

5.7 Unequal Numbers of Observations in the Groups

The random effects model for the one-way classification with unequal numbers of
observations per group is

Yij =+ a; + ey (5.10)

i=1,2,...,t i=1,2,...,m

with the same assumptions and interpretations given for the random model in
Equation (5.1). The analysis of variance computations are the same as those for
the fixed effects model with unequal replication. The expected mean squares for
Among Groups and Within Groups are, respectively,

E(MSA) = 02 + ‘T‘()O'g
and (5.11)
E(MSE) = g2

where
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t
o = t—i—l {N - g %] (5.12)
The analysis of variance estimators for the variance components o2 and o} are
T = MSW
and (5.13)

o _ (MSA—MSW)

To

When the r; are unequal the confidence interval estimator for o2 in Equation (5.5)
no longer applies. The interval estimator for o2 from Equation (5.4) with (N—-1)
degrees of freedom is valid.

5.8 How Many Observations to Study Variances?

The null hypothesis of interest in the random effects model, Hy: 03 =0, is tested
with FF = MSA/MSW,and the power of the test is

1 = B = P(F > Fyyu|Ho false) = P(F > Fruumlo? > 0)

When o2 > 0, the distribution of F° is the central F,, ,, distribution multiplied by a
constant 1/A%, where

M=14 =2 (5.14)
g
The power of the test can be determined from the central F distribution as

1 —ﬂ = P[F > —;E(FOI;VI:V'J)]

Given the number of groups (t), significance level (), desired power (1 — 3},
and X, the required replication numbers can be determined from charts of power
curves similar to those for the fixed effects model.

" A value for A may be determined on the basis of a desired ratio for the variance
components, o2/oZ, or on the basis of the standard deviation of an individual
observation, o;,. Consider Example 3.1 in which the engineer manufactured several
bars of a high-temperature alloy in each of several castings. If there was no varia-
tion in the strength of the bars due to castings, then the standard deviation of a bar
selected at random would be o, = 0. The engineer may want to detect an increase
in the variability among castings (o) that causes a certain percentage increase in
o, Suppose P is the fixed percentage increase in o, that is acceptable, and beyond
which *the nuil hypothesis would be rejected. The ratio of g, to ¢, expressed in
terms of P when the null hypothesis is rejected is
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a o2 + o2
T VTTT 40P

Te Te

The necessary value for the ratio o2/02 in Equation (5.14) is

)

=(1+0.01P) —1 (5.15)

thml q

Charts of power curves are given in Appendix Table X for o = .05, .01, and se-
lected values of 1 and i for the F' distribution. The charts plot the pow’er of the
test, 1 — /3, versus A, where A? is given in Equation (5.14).

Example 5.2 Castings of High-Te¢mperature Alloys Revisited

In2 Example 5.1 the estimates of the variance components were 5> = 5.82 and
T, = 6.81, The estimated standard deviations are &, = 2.41 anii’& =3.55
_Suppqse the engineer is able to run ¢ = 5 castings and wants to géetect‘ ar;
increase in the standard deviation o, over ¢, of P = 35 with a power of at

least .80 at t]le .05 le\'EI Oi Slg]llflcallce. [lle lequl[ed alue I(H tlle ratio

o o)

={140.0135))* -1 = 0.8225

mqml 9

50 the_l.t A=4/1-+r(0.8225). If a value of r = 10 is chosen, then A = 3
Entermg Appendix Table X for #; = 4 dnd locating the approximate positior;
of the line for 15 = 45 with o = .05 the value of 1 — & is between 0.8 and
0.9. Therefore, the engineer could measure ten bars in each of the ﬁvé cast-

ings to detect an increase of 35% or more in the {ati
: standard deviat
castings. ion due to the

5.9 Random Subsamples to Procure Data for the Experiment

It is sometlimes necessary or convenient to randomly sample subunits of the experi-
ment:.il units to procure the requisite data for a study. The observational unit inpthis
case is a subsample taken from a larger experimental unit. Several plants may be
.sampled from a field plot for measurements of insect infestation. A serum 533’(] le
is frequently split into two or more subsamples prior to spectrophotometric anarl’ -
sis. Several samples of paint are extracted from replicate batches of each a'yt
formulation to test paint durability. -

.The‘subsamples introduce another random source of variability for the obser-
vat‘mns in addition to that among the experimental units. It is important to distin-
guish .between the variation contributed by subsamples and that contributed by the
experimental units. This distinction becomes important to estimation of stanycriard
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errors for treatment means and tests of hypotheses about treatments. An introduc-
tion to this distinction was given in Examples 1.1 and 1.2 in the discussion on
replication in Chapter 1.

Estimates of the variance components for experimental units and for subsam-
ples identify the amount of variation contributed by the two sources. This informa-
tion is used in Section 5.10 to determine the relative number of experimental units
to minimize the standard error of the treatment means or the cost of the experiment.

Example 5.3 Pesticide Residue on Cotton Plants

Applications of pesticides are often part of insect management programs used
for agronomic and horticultural crops. One of the concerns following applica-
tion of pesticides is the concentration of pesticide residue that remains on the
plants in the field after certain periods of time. Pesticide residues are evalu-
ated with chemical assays in the laboratory using plants sampled from field
plots treated with the pesticide.

Research Hypothesis: For one particular problem the investigators hypothe-
sized that the ability to recover pesticide residue on cotton plant leaves dif-
fered among two standard chemistry methods that were being used on a
regular basis for the residue assays.

Treatment Design: The treatments consisted of the two standard chemistry
methods, methods A and B, that were used on a regular basis.

Experiment Design: Six batches of plants, each batch from a single field
plot, were sampled from the field and prepared for residue analysis. Three
batches were randomly allocated to each of methods A and B ina completely
randomized design.

The amount of plant material in each batch sampled from the field ex-
ceeded the amount required for an assay in the laboratory by either chemistry
method. Thus, two subsamples of the required quantity of plant material were
taken from each batch of the prepared plant tissue and analyzed by the appro-
priate method. Consequently, there were two chemistry methods, three
batches (replications) per method, and two subsamples from each batch. The
pesticide residues determined for each of the subsamples as micrograms per
unit of weight are shown in Table 5.4.

The Statistical Model with Subsamples
When there are n subsamples from each of r experimental units for ¢ treatments the
statistical model is

Yok = ¢+ 7o+ ey + digk (5.16)
i=1,2,...,t j=12,...,r kE=12,...,n

where p is the general mean, 7; is the fixed effect of the ith treatment, e;; is the
random experimental error effect for the jth experimental unit of the ith treatment,
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Table 5.4 Pesticide residue {ug) found on samples of cotton plants

Method A Method B
Batch Sample iz ¥s; ;. Baich Sample vy V.. U,
1 120 3 R E—
2 110 1150 8 71 71.0
2 3 120 5 9 70
4 100 110.0 10 76 73.0
3 5 140 6 11 63
6 130 1350 1200 12 68 655 69.8
y. =949

Source: G. Ware and B. Estesen, Depanument of Entomelogy, University of Arizona,

and d;;;. is the random effect for the kth subsample of the jth experimental unit of
the ith treatment. It is assumed that the ei; and di; are normally distributed inde-
pendent random effects with means 0 and variances ¢? and o3, respectively. If
treatments are random, then the fixed treatment effects (r;) in Equation (5.16) are

replaced by the random group effects (a;), which have a normal distribution with
mean 0 and variance o2,

The Analysis of Variance with Subsamples

The observations, expressed as deviations from the grand mean, can be written as a

sum (.)f three separate deviations that represent the sources of variation in the
experiment:

g =¥ )=0. -390+ @ig‘. = ¥i) + Wi — yij.) (3.17)

The devi_ation of any observation trom the grand mean shown on the left-hand side
of Equation (5.17) is the sum of three terms. They are the

o treatment deviation (; — 7 )[e.g.,{H_ -7 ) =120.0—- 949 = 25.1]

» experimental error (y;; — %; ) [e.g., (7, — 7)) = 1150~ 120.0 = - 5.0]

» sampling error (y;% — ¥;;) fe.g.. (i — 7y, ) = 120.0 — 115.0 = 5.0]
Squaring and summing both sides of Equation (5.17) results in the total sum of

squares on the left-hand side expressed as a sum of the sums of squares for treat-

ments, experimental error, and sampling, respectively. The fundamental partition
of the total sum of squares is

55 Total = S Treatment + 5§ Error + S5 Sampling (5.18)

The sums of squares partitions are summarized in the analysis of variance shown in
Table 5.5 with expected mean squares for the model with fixed treatment effects.
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Table 5.5 Analysis of variance for the completely randomized design with sub-
samples?

Source of Degrees of Sum of Mean Expected
Variation Freedom Squares Square Mean Square
Total trn — 1 SS Total

Treatments t—1 ssT MST ol + no? + rnd?
Error Hr— 1) SSE MSE oj + nat
Sampling trin — 1) 5SS MSS o3

T n

55 Total = Zt: Y Y wg—-7)

i=13=1 k=1
¢
SST = 58 Treatment = rn > (F, — §_)°
i=1

[ r
SSE=SSEmor=n).Y @y — 7.)
i=1 =1
t T [
558 = S8 Sampling =3_ 5 kz (i — Tiy)’
e

i=14=1

Two sources contribute to variation in the observations that make up the esti-
mate of a treatment mean: the variation among the replicate experimental units
treated alike (o) and the variation among the sampling units within the same ex-
perimental units (o3). Consequently, the variance of a treatment mean is

2 2
a )
o2 =Ly % (5.19)
- T r
when there are n subsamples from each of the r replicate expertmental units. The
standard error of any treatment mean is estimated by

MSE
S5, =1/ = (5.20)

The analysis of variance for the data in Table 5.4 is shown in Table 5.6. The
null hypothesis of no differences among treatment effects, Hy: 7; = 0, is rejected if
Fo = MST/MSE exceeds Fy;_1y4,—1y- The statistic® in Table 5.6 to test the
null hypothesis of no difference between the means of methods A and B, Fy

= 7550.08/190.08 = 39.72, is exceeded with probability .003. Since the mean of
method A, §; = 120, exceeds that of method B, g, = 69.8, it may be concluded
that method A recovers more of the pesticide residue than method B.

2The sum of squares for “Error” represents the sum of squares for experimental units nested within the
treatment groups. A computer program will require a term in its syntax that designates the experimental
units within treatments.

3 Frequently, it is necessary to specify the carrect denominator for the Fp statistic in the instructions to
a computing program. By default, many programs utilize the last partition sum of squares for the
denominator of the Fj statistic for all lines of the analysis of variance table.
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Table 5.6 Analysis of variance for pesticide residue from subsamples of cotton

plants
Source of  Degreesof  Sumof Mean
Variation Freedom Squares Sguare F Pr>F
Total 11 8640.91
Methods 1 7550.08 7550.08 39.72 .003
Error 4 760.33 190.08
Sampling 6 330.50 55.08

The standard errer estimate for a method mean, Equation (5.20) is

190.08
S5, =4 —g— = 563

and the standard error estimate of the difference between the two method means is

[2(190.08)
S5 = T =719

5.10 Using Variance Estimates to Allocate Sampling Efforts

The distribution of resources at the planning stage of an experiment involving sub-
samples requires decisions regarding the number of experimental units to use and
the number of subsamples to take from each experimental unit. The objective is to
have a design that results in greater precision—a smaller variance for the estimate
of a treatment mean (Jéi..) for a fixed cost. When estimates of the variance compo-

nents and relative costs of the experimental and sampling units are available it is
possible to provide an optimum allocation of effort between experimental units and
sampling vnits in the experiment. '
Cochran (1965) provided an optimum allocation solution based on the cost
function €' = ¢)r 4 cyrn. The value of C is the cost for a single treatment in the
experiment composed of r experimental units each at a cost of ¢; and rn. sampling
units each at a cost of c3. The objective may be posed as an attainment of minimum
cost (C') for a fixed variance in Equation (5.19), or the attainment of a minimum
variance for a fixed cost. Either way the solution for the number of sampling units

(n)is

n= (5.21)

The value of r is found by solving the cost equation for r if the cost is fixed or by
solving the variance Equation (5.19) if the variance is fixed.
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Example 5.4 Pesticide Residue Revisited

An optimum allocation for plots of cotton plants and subsamples per plot is
required for pesticide residue studies. The estimates of the variance com-
ponents obtained from Table 5.6 are

Ty = MSS =55.08

and

= 67.50

2 (MSE—-MSS) (190.08 —55.08)
g, = S

e n 2

Suppose the cost of one plot is ¢; = 1.0 relative to the cost of preparing and
analyzing one subsample, c; = 0.1. The estimated number of subsamples per

plot is
[ 1(55.08)
A 0167.50) 286

Three subsamples would be required from each plot. If the investigator de-
sired a standard error for the treatment mean of o5, = 3 or a variance of 9,
the number of required plots  can be found from the substitution of the re-
quired qiiantities in Equation (5.19). The substitutions are

5 =9, = 675,03 = 5508, and n =3

so that

.08 )
g = i—— +E; Or = 8586, r =954
r3 T

The investigator would have to use ten plots with three subsamples per plot to
have a standard error of treatment means equal to 3 with relative costs of 1.0
and 0.1 for plots and subsamples, respectively.

5.11 Unequa! Numbers of Replications and Subsamples

Unequal subsample and replication nurabers can occur in a study. The three differ-
ent possibilities are (1) unequal numbers of experimental units per treatment with
unequal numbers of subsamples per experimental unit, (2) equal numbers of ex-
perimental units per treatment with unequal numbers of subsamples per experi-
mental unit, and (3) unequal numbers of experimental units per treatment with
equal numbers of subsamples per experimental unit. Any imbalance in the number
of observations at the experimental unit or subsample stage affects the computa-
tions for the analysis of variance and the expected mean squares.
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Exampte 5.5 Biology of the Tobacco Budworm

Populations of insects often develop resistance to the toxic effects of an
insecticide after long-term exposure to the insecticide. When this resistance
develops the insecticide is no longer effective to control the population below
levels harmful to the crop.

Populations of the tobacco budworm, an insect pest harmful to the cotton
plant, have developed resistance to a number of common insecticides. The in-
secticides are one component of the overall program of insect control in
crops. Other components of the control program are also dependent on the
biology of the insects in terms of their reproductive life cycle and develop-
mental patterns.

Research Hypothesis: Entomologists hypothesized that the development of
insecticide resistance could also affect other aspects of the tobacco bud-
worm’s biology. If this were true, then the changes in the insect’s biology
would have an effect on tobacco budworm control programs,

Treatment Design: The treatments used to address the research hypothesis in-
cluded three strains of the tobacco budworm: (1) USDA, a strain very suscep-
tible to a pyrethroid insecticide; (2) Resistant, a strain quite resistant to the
insecticide; and (3} Field, a naturally occurring strain collected in a local cot-
ton field. Both the Resistant and USDA strains were populations maintained
in artificial environments to sustain their resistance characteristics. Any dif-
ferences in the biology of the two strains were considered reflective of
changes associated with developed insecticide resistance. The biology of the
naturally occurring Field strain served as a control treatment for this supposi-
tion. One of the characteristics measured to evaluate the biology was the
weight of male larvae.

Experiment Design: Six random matings between female and male moths
were made from each of the strains, and the offspring from each mating were
reared in separate enclosures in the laboratory. The 18 enclosures were placed
randomly within the rearing facility. Unequal numbers of offspring resuited
among the 18 matings as shown with the data listed in Table 5.7.

The Statistical Model and Analysis

Suppose the experiment has r; experimental units for the éth treatment group and
n;; subsamples for the jth experitmental unit of the ith treatment. The statistical
model for unequal subsamples is

Yigh = (4 T + eij + dij {5.22)

i=1,2,..t j=12,...m k=12 ny
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Table 5.7 Weight of male larvae from six matings in each of three tobacco
budworm strains

Strain Mating Weight Nij 1;, Tij. Ui,
USDA 1 305,300 2 302.5
2 376,363, 389 3 376.0
3 282 1 282.0
4 309, 321 2 315.0
5 354,308,327 3 329.7
6 330 ! 12 3300 3303
Field 7 280 1 280.0
8 311, 349,291,286 4 309.3
9 377,342 2 359.5
10 346, 340, 347 3 3443
it 360 1 360.0
12 359,299 2 13 3290 329.8
Resistant i3 273,276 2 274.5
14 272,253 2 262.5
15 315,262,297 3 291.3
16 323 1 323.0
17 252 1 252.0
18 319,298 2 11 308.5 2855
7_=3164

Source- Dr. T. Watson and 8. Kelly, Department of Entomology, University of Arizona,

where p is the general mean, 7; is the fixed effect of the ith treatment, e;; is the
random experimental error effect for the jth experimental unit of the ith treatment,
and d,j is the random effect for the kth subsample of the jth experimental unit of
the ith treatment. We assume the e;; and d;;i are normally distributed independent
random effects with means 0 and variances o and o3, respectively. If treatments

are random, then the fixed treatment effects (7;) in Equation (5.22) are replaced by

the random group effects (a;), which have a normal distribution with mean 0 and
variance o=,

The sums of squares partitions for the analysis of variance and expected mean
squares for random treatment effects are shown in Table 5.8. If treatment effects
are fixed, replace coo2 with > i (pi — EY/aE=-1.

Notice that the squares of the treatment mean deviations in SST are weighted
by the number of observations on the treatments, 7. , and the squares of the experi-
mental error deviations in SSE are weighted by the number of subsamples for the
experimental units, ;. The coefficients for the variance components in the ex-
pected mean squares with random treatment effects are
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Table 5.8 Analysis of variance for the
completely randomized i i
unequal numbers of replications and subsamples ’ fzed destgn with

Source of Degree of Sum of Mean Expected
Variation Freedom Squares Square Mean Square
Total N -1 SS Total
Treatments t—1
E t SST MST o2 + 102 + eyo?
ITor P —
gf‘ t SSE MSE o3 + 3ol
) ¢
Sampling N -3 n SSS MSS o3
i=1
t Ty
N:EZR{:‘ nz-_zznij
i=17=1 =1
Eor T
S5 Total =3 5" 3 (i — 7. )
i=1 g=1 k=1
t
SST =¥ ni(F. — 4. )
i=1
i
SSE = Z] _}:lﬂij(ﬂij. - %)
i=1 j=
t o Ny
S88 =337 % Wik — T3 )
i=1 j=1 k=1
1 B 1 D
ag=——1_4-= = — - =
1= 7 ( N),c;; P (N N),andq: n (¥~ A)
(29
i=1
where &2
= — 1, = ™ ] d D = 2
=1 =1 \ =1 =1 i 50 ; "

When the numbler of subsamples are equal for each of the experimental units
then n;; = n for all ¢ and j; the coefficients are ,

GQg=c3=n and g = L [N - 2] (5.24)

t—1 N
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When ¢; = c3 = n the expected mean squares for Treatments and Error will be
identical under the null hypothesis Hp: 7: =0, and the statistic Fy = MST/MSE
is used to test the hypothesis.

The analysis of variance for the data is shown in Table 5.9. The expected mean
squares for analysis of variance are also shown in Table 5.9 for random treatment
effects. The calculations of the coefficients for the variance components are shown
in Appendix 5A. '

Table 5.9 Analysis of variance for male larval weights from six matings in each
of three tobacco budworm strains

Source of Degreesof  Sumof Mean Expected
Variation Freedom Squares Square Mean Square
Total 35 46516.75

Strain 2 15187.05 7593.52 o3+ 23607 + 119702
Error 15 23082.45 1538.83 o +1.9307

Sampling 18 8247.25 458.18 o3

Tests of Hypotheses Require Approximate F Tests

When the subsample numbers are not equal, ¢; and ¢3 can have different values.
There is no exact test of the null hypothesis for treatment effects because no two
mean squares have the same expected mean squares under the null hypothesis if ¢
and cs have different values. An approximate Fy statistic can be calculated to test
the null hypothesis of no treatment effects when ¢ # c3. An approximate test is
necessary for the tobacco budworm experiment since ¢; = 2.36 and c3 = 1.93 in

Table 5.9.
A Mean Square for Error is devised with an expectation equal to that of the
Mean Square for Treatments, given a frue null hypothesis with E(QMST) =
2 2
oy +ao,- :
The required mean square is constructed with a linear function of M 5§ and
MSE as

M=o, MSE + a:MSS (5.25)

If a; = c/es and ag = 1 — erfes, the expected value of M will be 0%+ cr0? as
required for the approximate F test.

The Satterthwaite Approximation for Degrees of Freedom

Satterthwaite (1946) derived the following result for a linear function of mean
squares. Given a linear function M, where

M= alMS] -+ (I.QMSQ + -+ akMSk (5.26)
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and M5y, MS,, ..., M5 are mean squares with degrees of freedom vy, 1, ..

respectively, the degrees of freedom for M are approximated by e
M2
V= ——
E (a:MS5)? (5.27)
5 )
i=1 4

The linear function of mean squares necessary to test the hypothesis of no

difﬁrence il‘l mean Iarval w i g =} ree ()hacc W

€1 2.36

= = — = _ &l
m=—=75 =122 ad ap=1-2=1-122= -022

MSE = 153883 with 15 d.f. and MSS = 458.18 with 18 d.f.
From Equation (5.25)
M=aMSE+a;MS55 = 1.22(1538.83) — (0.22(458.18) = 1776.57
The degrees of freedom for M from Equation (5.27) are

v 1776.57*
T 22(153883)F - 022(dssaF ~ >4
15 18

The truncated value of v = 13 is used as the degrees of fi

of the test statistic is g = MST/M = 7593g.53 / 1776?567dci——m4fg; M’[.'hrl;hir‘i,;lcl:i
Yaiu‘_e at the « = .05 level of significance is Fys013 = 3.81, and tk;e n'ull hypothesis
is rf_:Jected. There are some differences among t1hé mean larval weights 0fytze three
strains. The test is only approximate, and it should be noted that the approximation

is degraded somewhat if some of th i N .
negative. e of the coefficients {a;} in Equation (5.26) are

EXERCISES FOR CHAPTER 5

1.

A gem_e{t'lllcs stuclly with beef anirr}als consisted of several sires each mated to a separate group of
daml s. The mat}ngs thgt resulte(_i in male progeny calves were used for an inheritance study of birth
weights. The birth weights of eight male calves in each of five sire groups follow.
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Sire Birthweights

177 61, 100, 56, 113, 99, 103, 75, 62
200 75, 102, 95, 103, 98, 115, 98, 94
201 58, 60, 60, 57, 57, 59, 54, 100
202 57, 56, 67,59, 58, 121, 101, 101
203 59,46, 120, 115, 115,93, 105, 73

Source: Dr. §. DeNise, Department of Animal Sciences,
University of Arizona.

a.  Assume a random model for this study. Write the linear model, explain each of the terms,
compute the complete analysis of variance, and show the expected mean squares.

b. Estimate the components of variance for sires and progeny within sites, and determine the
00% confidence interval estimates.

¢. Test the null hypothesis Hy: o2 = 0 for the sires.

d.  Estimate the intraclass correlation coefficient, and give the 90% confidence interval estimate.

The data from Exercise 3.5 are cholesterol concentrations from laboratory analyses of 2 samples

from each of 8 patients.

a. Assume a random model for the study. Write a linear model, explain each of the terms,
compute the analysis of variance, and show the expected mean squares.

b. Estimate the components of variance for patients and samples and determine the 90% confi-
dence interval estimates.

c. Estimate the intraclass correlation coefficient and give the 0% confidence interval estimate.

d.  What is the interpretation of the intraclass correlation coelficient in this study?

Think of research problems in your field of interest for which the treatments in the study could be a

random sample from a large population of treatments.

a. Describe a particular study you could conduct.

b. Describe how vou would conduct the study.

¢, Write the linear model for your study; identify the terms; and write out the analysis of variance
table showing sources of variation, degrees of freedom, and expected mean squares.

d. Explain why it would be important to know the magpitude of the Among Group and Within

Group components of variance.

Describe how you would use estimates of the components of variance.

f.  What assumptions do you have to make about your study to have valid inferences from your
variance component estimates?

o«

A plant pathologist took four 3-pound samples from 50-ton lots of cottonseed accumulated at
various cotton gins during the ginning season. The samples of seed were analyzed in the laboratory
for Aflatoxin, which is a toxin produced by organisms associated with the seeds. The Aflatoxin
concentrations in parts per billion for samples from eight lots of cottonseed follow.
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Lot Number Aflatoxin (pph)
3469 - 72 39, 57, 63, 66
3849 — 52 56, 13, 25, 31
3721 —24 64, 83, 88, 71
3477 — 80 29, 55, 21, 51
3669 ~ 72 38, 66, 53, 81
3873 -76 11, 49, 34, 10
3777 - 80 23,0,5,20

3461 — 64 10, 11, 23, 37

Source: Dr. T. Russell, Department of Plant Pathology, Univer-
sity of Arizona.

a. Assume lots and sampies within lots are random effects. Write the linear model for the study

explain the terms, compute the complete analysis of variance, and show the expected mean
squares.

b. Estimate the components of variance for lots and samples within lots.

c.  What is the total variance estimate (’c?f,) for an individual observation?

d.  What proportion of the total variation (03) in Aflatoxin can be attributed to variation among
lots and samples within lots, respectively?

e.  What is the standard deviation estimate (5, ) for an individual observation?

f. Explain how the variance component estimates might be used to plan future sampling for Afla-
toxin contamination.

Think of research problems in your field of interest that require you to take samples of the experi-

mental {or observational) unit because the unit cannot be measured in its entirety,

a. Describe a specific study you could conduct.

b. Describe how you would conduct the study.

¢.  Write a linear model for your study; identify the terms; and sketch the analysis of variance
showing sources of variation, degrees of freedom, and expected mean squares.

d.  What would be the relative costs for experimental units {c,) and sampling units (c5)?

A study was conducted on high-energy particulate cartridge filters used with commercial respira-
tors for protection against particulate matter. One particular test included three filters randomly se-
lected from each of two manufacturers, Three independent replicate tests were made on each of the
filters. The measurements were the percent penetration by a standard type of test aerosol.

‘ Manufacturer | Manufacturer 2
Filter i 2 3 4 5 i)
.12 016 0.15 0.91 066 2.17
.10 0. 0.12 083 083 1.52
112 026 0.12 095 061 1.58

Source: R, 1, Beckman and C. J. Nachtsheim (1987), Diagnostics for mixed-model
analysis of variance, Technometrics 29, 413-426.
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a. Write a linear model for this study, explain each of the terms, compute the analysis of vari-
ance, and show the expected mean squares.

b. Test the hypothesis that there is no difference between the average percent penetration of the
filters for the two manufacturers.

¢. Compute the means, their standard errors, and the 95% confidence interval estimates of the
means for each of the manufacturers.

d. Suppose the relative costs, c;:c, for the study are 200:1, where ¢; is the cost of a filter and ¢
is the cost of an independent filter test. The engineers wanted to achieve a standard error for a
mean of 0.20. How many filters and how many tests per filter would be required?

A soil scientist studied the growth of barley plants under three different levels of salinity in a con-
trolled growth medium. There were two replicate containers for each treatment in a completely ran-
domized design and three plants were measured in each replication. The data on the dry weight of
the plants in grams follow.

Salinity Container Weight(g)
Control 1 11.29,11.08, 11.10
2 7.37, 6.55, 8.50
6 Bars 3 5.64, 5.98, 5.69
4 4.20,3.34,421
12 Bars 5 4.83,4.77,5.66
0 3.28,2.61,2.69

Source: Dr. T. C. Tucker, Department of Soil and Water Science,
University of Arizona.

a. Write a linear model for an analysis of the data, explain the terms, compute the analysis of

variance, and show the expected mean squares.

Test the hypothesis of no difference among the means of the salinity levels.

Compute the standard error of a salinity level mean,

d. Partition the sum of squares for salinity into two orthogonal polynomial sums of squares
(linear and quadratic), each with 1 degree of freedom, and test the null hypotheses of no linear
or quadratic regression.

e. Suppose the relative costs, ¢j:¢p are 10:0.1, where ¢ is the cost of setting vp and maintaining
another replicate container and ¢; is the cost of measuring the weights in a container. How
many replicate containers and plants per container would be necessary to achieve a standard
error for a treatment mean of 0,757

L=

The porosity index is a measure used by soil scientists to assist in the prediction of water move-
ment, storage, availability, and aeration conditions of soils. A soil scientist utilized a special sam-
pling design to take soil samples from one of the university experiment farms to measure the
porosity index of the farm soil. The farm was partitioned into fields of approximately 4 hectares
each divided into eight sections. The sampling plan included a random selection of fields from
which sections were randomly selected. Locations for soil subsamples were randomly selected
within the sections. A special staggered sampling design from Goldsmith and Gaylor (1970) was
utilized for the study. The porosity index of each soil subsample follows,
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Field Section  Porosity Field Section  Porosity
1 1 3.846,3.712 9 17 5.942
2 5.629,2.021 18 5.014
2 3 5.087 10 19 5.143
4 4.621 20 4.061
3 5 4411 11 21 3.835,2.964
6 3.357 22 4.584, 4.398
4 7 3.991 12 23 4,193
g 5.766 24 4,125
5 9 5.677 13 25 3.074
10 3.333 26 3.483
6 il 4.355,6.292 14 27 3.367
12 4,940, 4.810 28 4212
7 13 2,983 15 29 6.247
14 4.396 30 4.730
8 15 5.603
16 3.683
Source: Dr, A, Warrick and M. Coelho, Department of Soil and Water Science, University of
Arizona.

a. Assume all effects are random. Write a linear model for the study, explain each of the terms,
compute the analysis of variance for the data, and show the expected mean squares.
Estimate the components of variance for fields, sections, and samples.

c. Test the null hypothesis Hy: o2 = 0 for the fields” component of variance.

d. Test the null hypothesis Hy: o2 = 0 for the sections’ component of variance.

Use the data from Exercise 5.3 to determine how many samples the plant pathologist would have to
take from each of five lots of cottonseed to detect a ratio oZ/g2 = 2 at the .01 significance level
with a power of .90.
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5A Appendix: Coefficient Calculations for Expected | 6 FaCtOI'iaI Treatment DeSig ns

Mean Squares in Table 5.9

2o..412 124420 224 42P
224+ 1 n i

_ = 7.11655
- 12 13 11
B= Zzn2—2 4P+ 12422 =86
i=1 j=1
D= En 2241324 112 =434 } The factr_)rial t.reatment design was introduced in Chapter 1 as a way tp investigate
the relationships among several types of treatments. The basic factorial treatment
36 design in a completely randomized experiment design and its analysis are intro-
__] ( ) (7 11655 — ——) =236 duced in this chapter. Planned contrasts and response curve estimation, discussed
:_ —1 in Chapter 3, are applied to the factorial treatment design. Methods to determine the
134 number of required replications and to analyze the factorial treatment design with
= ( ) (3 - -3—) = 1197 one replication or unequal treatment replications are discussed as well.
e = (_—j W-4= —-(36 —7.11655) = 1.93 6.1 Efficient Experiments with Factorial Treatment Designs
! Z ri—t ) :‘

Comparisons among treatments can be affected substantially by the conditions

under which they occur. Frequently, clear interpretations of effects for one treat-
" ment factor must take into account the effects of other treatment factors. A special
type of treatment design, factorial treatment design, was developed to investigate

more than one factor at a time.

E Factorial treatment designs produce efficient experiments. Each observation
supplies information about all of the factors, and we are able to look at responses to
one factor at different levels of another factor in the same experiment. The response
to any factor observed under different conditions indicates whether the factors act
on the experimental units independently of one another. Interaction between factors
occurs when they do not act independently of one another.

Example 6.1 Compaction Effects on Asphaltic Concrete Durability

Asphalt pavements undergo water-associated deteriorations such as cracking,
potholes, and surface raveling. The weakened pavement occurs when there is
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