422 CHAPTER 12 FRACTIONAL FACTORIAL DESIGNS

Table 12A.1 (continued)

Number of Experimental Design Design 1 3 Res pO nse S U rface DeS|g nS
Factors Units Fraction Resolution — Generator*
9 16 L m - E=ABC
F=BCD
G =ACD
H=ABD
J=ABCD
64 3 v G =ABCD
H = ACEF
J=CDEF The central topic in this chapter is constructing designs for efficiently estimating re-
sponse surfaces from factorial treatment designs with quantitative factors. The na-
39 L v F =BCDE ture of linear and quadratic response surfaces is discussed, and designs developed
G = ACDE specifically for response surface experiments are described. The discussions in-
H=ABDE clude estimating response surface equations and methods to explore the surfaces.
J=ABCE i Special designs are presented for experiments with factors that are ingredients of
i . mixtures.
F=BCD
G = ACD 13.1 Describe Responses with Equations and Graphs
H=ABD
J=ABCD The objective of all experiments includes describing the response to treatment fac-
K = AB tors. Throughout this text when treatment factors had quantitative levels we have
characterized the response (y) to the factor levels () with the polynomial regres-
12 1 v F=ABCD sion equation. For example, in Chapter 3 a polynomial equation was used to esti-
. G = ABCE mate the relationship between seed production of plants, y, and density of plants in
I = ABDE the plot, z. The estimated quadratic regression equation was graphed as a curve,
J=ACDE and we were able to visualize the response of seed production to plant density
K =BCDE throughout the range of plant densities included in the experiment. One of the main
64 1 v ¢ = BCDF advantages of the response curve includes the ability to visualize the responses
16 throughout the range of factor levels included in the experiment,
H=AGDB
J=ABDE
K = ABCE Response Surface Graphs for Two Treatment Factors
128 -}; v H = ABCG The response equation can be displayed as a surface when experiments investigate
J=BCDE the effect of two quantitative factors such as the effect of temperature and pressure
K =ACDF on the rate of a chemical reaction. In Chapter 6 a quadratic polynomial for two
Either the positive or negative half of the design generators may be used to construct qugntitative factors, salinity of media and number of days, was estimated to charac-
the fractional design. terize plant response.
423
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quation is represented as a solid surface in the three-
la. The equation is displayed in Figure i13.1lbasa
e values similar to contours of equal eleva-

The quadratic response €
dimensional display of Figure 13.
contour plot with lines of equal respons
tion levels shown on topographic maps.

{b) Quadratic Hesponse
Surface Contours

(a) Quadratic Response
Surlace

Figare 13.1 The response equation for two factors displayed as (a) a response

surface and (b) contours of equal response

he investigator to visually inspect the response

The response surface enables tl
over a region of interesting factor levels and to evaluate the sensitivity of the re-
pplications the response sur-

sponse to the treatment factors. In certain industrial a

faces are explored to determine the combination of factor levels that provides an

optimum operating condition, such as the combination of temperature and time to
maximize the yield of chemical production. In other applications the surfaces are
explored to find factor-level combinations that economically improve the responses
over current operating conditions if it is too expensive to attain optimum

conditions.
surfaces also can be used for analytical studies of fundamental pro-

Response
cesses. For example, they are used frequently in biological sciences to investigate
ble, such as the interaction between

the interplay of factors on the response varia
nitrogen and phosphorus on the growth of plants.

Polynomial Models Approximate the True Response

and analysis strafegy assumes the mean of the response

f the quantitative factor levels represented by the varia-
1 approximations to the

Response surface design
variable 1, is a function o
bles 1, T2, --- + Tk- Polynomial models are used as practical
true response function. The true function commonly is unknown, and the poly-
nomial functions most often provide good approximations in relatively small re-

gions of the quantitative factor levels.
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e I’:‘::armost ;ommc;:; polyngmial models used for response surface analysis are
, Ot first-order, model and the quadratic
, , O second-
first-order model for two factors is order ‘mOdel. the

ty = Bo + fr1 + faza (13.1)

and the second-order model is

fy = Bo + By + Bz + Pruxi + Pooxd + Fromy s (13.2)

_The- contour plots for first-order models have series of paralle] li

senting coordinates of the factor levels that produce equal response mles I’el_;f}‘:'
contour plots for quadratic models are more complex with a \!f)ariet v(ffues. 'ble
contour patterns. One such pattern shown in Figure 13.1bis a symmgtric IpOSSI ;
shape contour with a maximum response occurring within the central ::ontaounm;url
other patt-er.ns are shown in Figure 13.2. Figure 13.2a demonstrates a cont . 01111’
Wlth.a minimum response occurring within the center contour, indicatin o
mf:trlcal surfe'lce with a depression in the center. Figure 13.2b dépicts a ris%na S'{im-
wn:h the maximum occurring outside the experimental region. Figure 13.2¢ s% wes
stationary ridge in the center of the plot with a decreasing response to Ithe 'OI‘INS ;
:)ecft ﬂff ttg: .celr:er line3of maximum response. A saddle contour plot or minri:ﬁa:( (::

ayed in Figure 13.2d in which the response can i
ceriter of the region, depending on the direclzion of moifr:;:lee?lsteff(:n? ilclieg:tgrom e

Sequential Experiments for Response Surface Analysis

Bzx anfi W]lsc?n (}951) acc'elerated the promotion of response surface analysis for
;;10 ;strf?l: ag]phcatlons. Their primary theme was the use of sequential experimenta

wi e purpose of determining the optimu i iti :
; i m
ctial peocns g p operating conditions for an
t rghe _general approach begins with 2™ factorial treatment designs to identify fac-
ors that influence the process. Subsequent experiments use factor treatment combi-
nations to 10c?te an area in the factor space that most likely produces optimum
I::pt(r)rrllsef. Ultu:)l?tely, a 2" factorial arrangement in this region is augmented with

atment combinations to characterize the res i
o .

ol ponse surface with quadratic

Time Scales Can Prevent Effective Sequential Experiments

In some fields of application the time scale for completion of experiments prohibi
sequentl'fll experimentation. Many biological studies may require monthsptr: o
plete‘ a single experiment. Often accumulated information from previous biol C?m_l
studies ei_lables the investigator to identify the regions of optimum res onse
and experlmfants can be designed to explore the response surface in those re igﬁzse’
The objective of this chapter is to present some of the basic designs al d
methods of analysis used for identifying optimum conditions in se%]uentli]al
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experimental error and to provide a means to evaluate the adequacy of the linear
response surface model. )

An extensive coverage of methods to identify important factors and factor lev-
els in the region of optimum response conditions can be found in Box and Draper
{1987 and in Myers and Montgomery (1995). A brief introduction to the identifi-
cation of important factors is illustrated with an industrial chemistry experiment to
evaluate the factors that affect the vinylation of methyl glucoside.

=

B

70

Example 13.1 Vinylation of Methyl Glucoside

. 2 Vinylation of methyl glicoside occurs when it is added to acetylene under
high pressure and high temperature in the presence of a base to produce
monovinyl ethers. The monovinyl ether products are useful for various
industrial synthesis processes. The resuits of a study on vinylation of methyl
glucoside by Marvel et al. (1969) are used to itlustrate the methods to identify
and evaluate important factors for response surface characterization. The
ultimate goal of the project was to determine which conditions produced
maximum conversion of methyl glucoside to each of several monovinyl
isomers.

Some methods to identify important factors with first-order response sur-
faces are illustrated with two factors, pressure and temperature, The treatment
design was a 2® factorial with “temperature” at 130° and 160°C and
“pressure” at 325 and 475 psi as factors. Four replications were conducted in
the center of the experimental region at a temperature of 145°C and a pres-
sure of 400 psi to provide an estimate of experimental error variance and to
evaluate the adequacy of the linear response model. The treatment combina-
tions and percent conversion of methyl glucoside are shown in Table 13.1.
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*Figure 13.2 Contour plots for a (a) minimum surface, (b) rising ridge, (c) sta-
tionary ridge, and (d) saddle

experimentation and to present designs for efficiently estimating the response

Table 13.1  Vinylation of methyl glucoside in a 2? factorial plus four replications
surface equations when the region of optimum response 1s identified.

at the design center with Temperature and Pressure as factors

Original Factors Coded Factors
- i Temperature Pressure T T % Conversion
i with 2" Factorials D ) 2
13.2 ldentify Important Factors i o oo c
. i i d for the initial experiments 160 325 +1 —1 24
Complete or fractional factorial experiments are used Iot :
c;ndzcted in the study of response surfaces. When the reg19n of optimum re_:spoqse 130 475 1 41 6
is unknown, the 2* factorials or fractions of the 2" factorials are used.to identify 160 475 T e 1
factors that affect the response variable. (These designs were discussed in Chapters
11 and 12.) 145 400 0 0 21
145 400 0 0 23
145 400 0 0 20
Estimate Linear Responses to Factors 113 400 0 ) iy

The 2% factorials are suitable designs to estimate the mean responses for the I:n?ar,
or first-order, model in Equation (13.1). The inclusion of two or more observqﬂox:z
at the middle level of all factors is the usual recommended procedure to estima
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Coded Factor Levels for Convenience

Coded factor levels provide a uniform framework to investigate factor effects in
any experimental context since the actual values of factor level§ depend on the par-
ticular factors in the study. Coded levels for the 2" factorial design factors are

(A-A
T = D
where A; is the ith level of factor A, A is the average level foT' factor A; and D is
%(Ag — A;). Coded levels of temperature (T) and pressure (P) in Table 13.1 are

T — 145 _ P —400
=T and T2 = "ag

(13.3)

(13.4)

Estimates of the Linear Responses

The estimates of the coefficients for the first-order model in Equation (13.1) a

ﬁo=g=}—1(8+24+16+32)=20
~ 1 1

= -T=-(—8+24—16+32)=38
Br=5T=3(-8+

B =1P=l(—8—24+16+32)=4
t2 4

The estimates of the linear coefficients, By and [, ate one-haif of the factorial
treatment effect estimates for a 22 factorial (see Chapter 11). L,

The variance of the four observations at the design cc?nter is 2 = 3.33, and an
estimate of the standard error for the coefficient estimates 18

53= 1 /%{3.33) =091

Whether the experimental error variance is adequately estimated \_vith l‘f.‘.]}ll;&thﬂ

only at the center of the design factor levels can matter: If .the variance 0 t i trli;

sponse in any way depends on the factor le_vel, then replication of the des»lgr;1 atero_

high- and low-factor-level combinations lsbl:ec?.mmended to detect any he
iability among the treatment combinations. _

gene”(l)‘ll'llz \;Ziﬁ)alte?of the %egression coefficients indicate that incTeases in Terppera—

ture or Pressure will increase the vinylation of methy! glucoside. The estimated

first-order model equation is
7 = 20 + 8x; + 4z
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The temperature and pressure interaction TP measures lack of fit to the linear
model and is represented by the term Fjox 29 in the quadratic model in Equation
{13.2). The estimate of the coefficient 5y, is one-half of the TP interaction, or

S 1
Brz=3TP = (8~24~16+32) =0

The standard error of 312 is 0.91, the same as that for the linear coefficients. The

estimated interaction component of ¢ indicates that Temperature and Pressure are
acting independently on the conversion.

Center Design Points to Evaluate Surface Curvature

Replicate observations at the design center not only provide an estimate of experi-
mental error, but they also provide a means to measure the degree of curvature in
the experimental region. Let i, be the mean of the four treatment combinations for
the 27 factorial and 7, be the mean of the center points. There is some evidence for
curvature on the response surface if the average response in the center of the design
coordinates, g, is larger or smaller than the average response at the extreme levels
of the factors, §;. The difference (7, —¥.) 1s an estimate of §y) -+ fa0, where 3y
and SBao are the quadratic regression coefficients in Equation (13.2). The observed
means are §; = 20 and §, = 22, with a difference of ¥; — 3, = - 2. The standard

error of the difference is estimated as ‘/3.33(}; + %) = 1.29; the linear response
appears to adequately describe the surface in this region.

The contour plot for the estitated linear response equation is shown in Figure
13.3. The values of the contours ascend as the levels of Temperature and Pressure
increase. Ascending contours indicate that a combination of Temperature and Pres-
sure to maximize conversion may exist in a direction pempendicular to the contours.

Path of Steepest Ascent to an Optimum Response

Ultimately, the investigator will want to characterize the region of optimum re-
sponse. To do so requires the investigator ig locate the region of factor levels that
produces optimum conditions. The method of steepest ascent is a procedure de-
veloped to move the experimental region in the response variable in a direction of
maximum change toward the optimum.

Based on the estimated linear equation % = 20 + 8z; + 4xs, the path of steep-
est ascent perpendicular to the contours of equal response moves 4 units in the
direction for every 8 units in the x; direction. Equivalently, the path has a move-
ment of 4/8 = 0.5 unit in zy for every 1 unit movement in z;.

The path of steepest ascent is started at the center of the design with
{x1, z2) = (0,0). The center of the design for values of temperature and pres-
sure is (T, P} = (145,400) in Figure 13.3. A change of Ax; =1 unit in the =
direction is a 15°C change in Temperature and a Axs = 0.5 unit in the 5 direction
is a 37.5 psi change in Pressure.
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T
205.0]
1825
: « Design points on path
of steepast ascent
igi sign points
160.0 o Original design p
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13754
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Figure 13.3 Contour plot for the linear response of methyl glucoside vinylation,
% conversion, to temperature (77) and pressure (P)

The objective is to move along the path of steepest ascent untill a rpaximum re-
sponse is observed. The chemist will perform experiments at combmatlonslof Tem-
perature and Pressure along the path of steepest ascent. Suppose the chemist wants
to make changes relative to a 1-unit change in z;. The levels of T'emperature afld
Pressure along the path beginning at (T, P) = (145, 400), the.des1g,n center, with
1-unit changes in «; and one-half unit changes in zo are shown in Table 13 .2.

Table 13.2 Path of steepest ascent to search for region of maximum response in
vinylation of methy! glucoside

Step Ty ) T P
0 0 0 145 400.0
1 i 0.5 160 437.5
2 o) 1.0 175 475.0
3 3 1.5 190 512.5
4 4

2.0 205 550.0

Eventually, as the chemist advances along the path of steepest ascent tl}e in-
creases in the response become smaller until an actual decreas'e is obseer:d in the
response. The decrease in response should indicate that the region of maximum re-
sponse is in the neighborhood of the current temperature and pressure conditions.
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At that point in the process an experiment can be designed to estimate a quadratic
polynomial equation that approximates the response surface.

13.3 Designs to Estimate Second-Order Response Surfaces

A new experiment has to be designed to characterize the response surface once the
region of optimum response is identified. The surface usually is approximated by a
quadratic equation to characterize any curvature in the surface.

The 2" factorials or fractions thereof are useful designs to identify the impor-
tant factors and regions of optimum response. However, in the region of optimum
response, these designs provide insufficient information to estimate quadratic re-
sponse equations. At least three levels are required for each factor, and the design
must have 1 4+ 2n + n(n — 1)/2 distinct design points to estimate the parameters in
a quadratic regression model for approximation to the curved surface,

Desirable properties for experimental designs for response surface estimation
include the ability to estimate experimental error variance and allow for a test of
lack of fit to the model. Designs should also efficiently estimate the model coeffi-
cients and predict responses.

Several classes of designs with these desirable properties that have been devel-
oped for second-order response surface approximation are discussed in this section.

3™ Factorials for Quadratic Surface Estimation

The 37 factorials can be used to estimate the quadratic polynomial equations. How-
ever, the number of treatment combinations required by the 3" factorials leads to an
impractical experiment size, While a 3” design with two factors only requires 9
treatment combinations, a design with three factors requires 27 and one with four
factors requires 81 treatment combinations.

Central Composite Designs Are an Alternative to 3" Factorials

Box and Wilson (1951) introduced central composite designs requiring fewer
treatment combinations than 3" factorials to estimate quadratic response surface
equations. The central composite designs are 2" factorial treatment designs with 2n,
additional treatment combinations called axial points along the coordinate axes of
the coded factor levels. The coordinates for the axial points on the coded factor
axes are { £ «,0,0,...,0), (0, £,0,...,0), ..., (0,0,0,..., o). Generally, m
replications are added to the center of the design at coordinate (0,0,...,0),

The central composite designs are used to advantage in sequentiat experi-
mentation. The first step of the sequence consists of a series of tests conducted
along a path of steepest ascent, such as that illustrated in Table 13.2. Eventually,
the tests lead to a set of factor levels that provide an apparent maximum on the
path. For example, suppose the responses on the path of steepest ascent are those
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shown in Figure 13.4, with a maximum response of 36 observed at 7' = 190°C and
P = 512.5 psi on the path.

220
190
® Rasponse on original design
@ Response on path of steepest
160 - 24® ascent
A New 22 factorial with center
points
D Axial points to compiete
ceniral composite design
130 a® .,

T T T T T
325 400 475 550 625

Figure 13.4 Path of steepest ascent and a central composite design

As a second step in the sequence the chemist can conduct a new 22 factorial
experiment with several replications at the design center of (T, P) = (190, 512.5).

Suppose the difference (3, — ¥,) computed from the new experiment indicates
a high degree of curvature on the surface. The third step in the sequential experi-
ment consists of additional runs of the experiment at the axial points ( & ¢, 0) and
(0, + o) shown in boxes in Figure 13.4. This last set of treatment combinations on
the axes, along with the 22 factorial and center points, constitutes a central com-
posite design as a result of the sequential experimentation.

One replication of a central composite design consists of Ny = 2% treatment
combinations from the 2" factorial, N, = 2n treatment combinations at the axial
points in the design, and m replications at the center for a total of
N = Nj + N, +m design observations.

The coordinates on the coded x; and x» axes for the central composite design
with two factors are shown in Display 13.1. A graphic display of the coordinate
locations for the coded factor levels of two- and three-factor central composite de-
signs are depicted in Figure 13.5. A quadratic equation can be estimated from this
design because each factor has five levels. In addition, as we shall see in the
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Display 13.1 Central Composite Design Coordinates
2? Design Axial Center*
€Tl Ty Ty o Iy T3
-1 =1 —-a 0 0 0
+1 -1 +a 0
-1 +1 0 — o
+1 +1 0 +a

“m replications

(0, @)

-1.1) (1,1}

/ X3
e, 0) @o s

-1,-1) {1,~1)
4 {D.—C() .

\

.\
'\
S,
1
'
1

(a) (b)

Figure 13.5 Central composite designs for (a) two factors and (b) three factors

next section, any significant deviations from the quadratic approximation can be
evaluated.

'The N =2" 4 2n 4 m experimental units required for the central composite
design with n factors are fewer than those required by 3* factorials with three or
more factors. Thus, the central composite designs are more economical in the use
of experimental resources and provide the ability to estimate quadratic response
equations. Fractions of the 2" designs with high-order interactions aliased can be
used as the 2" design base when there are many factors in the study.

Rotatable Designs to Improve Respounse Surface Explorations

Equal precision for all estimates of means is a desirable property in any experi-
mental setting. However, the precision of the estimated values on the response sur-
face based on the estimated regression equation will not be constant over the entire
experimental region. A property of rotatability developed for central composite
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designs requires that the variance of estimated values be constant at points equally
distant from the center of the design which is coded coordinates (0,0, ..., 0).

Rotatability of a design becomes important in the exploration of a response
surface because the precision of the estimated surface does not depend on the orien-
tation of the design with respect to the true response surface or the direction of the
search for optimum conditions. The 2" factorials used as first-order designs to
implement the method of steepest ascent searches for regions of optimal responses
are rotatable designs. Thus, the orientation of the design does not hinder the method
of steepest ascent search because some responses arc estimated with less precision
than others.

The central composite design can be made rotatable by setting the axial point
values as o= (2”)1/ 4 The value of o« for a two-factor design 18 o=
(4111 = /2 = 1.414, and for a three-factor design o = (8)!/* = 1.682, If there are
75 replications of the 2" factorial and r, replications of the axial treatment com-
binations a more general form for « is e = (r27 / Ta)V 4 ff a 277 fractional fac-
torial is used as the basis for the central composite design, then o = (r 2P fra)t 1

&  Example 13.2 Rotatable Desigh for Vinylation of Methyl Glucoside

& Suppose the path of steepest ascent for the methyl glucoside study in Table
2 13.2 provided a maximum response at T = 190°C and P = 512.5 psi and a
rotatable central composite design is to be constructed with the design center
at (T Py = (190,512.5). Also, the relationship between the design coor-
dinates (x1, z2) and temperawure and pressure levels (T, P) remain as before
where a change of one unit in 7y is 15°Cand 2 change of one pnit in x9 is 75
psi. With o = \/i, the design coordinates and the required temperature and

pressure settings will be

Axial Center 2™ Design
m — 2 2 0 0 0 -1 +1 -1 +l
w2 0 0 -2 +y2 0 -1 -1+t +l
T 169° 210 190 190 190 75 205 175 205

P 5125 5125 4064 618.0 512.5 4375 4375 5875 5875
*Example calculation, 169° = 190° — /2(15°)

Designs for Uniform Precision in the Center of the Design

As previously stated, the variance of the estimated surface is not constant over the
entire surface. Box and Hunter (1957) showed that the number of center points in
the rotatable central composite designs could be chosen to provide a design with
uniform precision for the estimated surface within one unit of the design center
coordinates on the coded scale. They reasoned that the ‘investigator is most mter-
ested in the response surface near the center of the design when a stationary point
of the surface is located near the center of the design. The stationary point is a point

of maximum or minimum response or a saddle point as shown in Figure 13.2d.
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Some central composi :
posite rotatable desi i ; ..
Table 13.3. gns with uniform precision are shown in

Table 13.3  Uniform precision rotatable central composite designs

Number of Factors 2 3 4 5 5
Fraction of 27 1 1 1 1 1 (13 ?
! 1
ja\rf ] .4;4 1.6882 2000 2378 2.000 2.828 2.3278
N : : 16 32 16 64 32
- . 8 10 10 12 12
i - 6 7 10 6 15 9
13 20 31 52 32 91 53

The . . .

o 1ceé)ntlral c?mposne. designs require five levels of each factor coded as
s ,b : m,ﬂ dlf,ﬁczuun zzme instances the preparation of five levels for some factors
: . expensive, or time-consuming. The /2

may be to« ! on . ace-centered cube ]
]eve]:a:fatmr;l of the central' composite design with o = | that requires onl d‘i;;g”
joves of rt:lac fazctor. Sl{bstttutlng a = 1 into Display 13.1, the design for t\)\io ’r"aie
fors Cuboidzsl r:; jgi (t)‘acton:call. Tgebdesign is most attractive when the region of interest

n produced by the design rather tha i i
duced by the central composite design. " the spherical region pro-
The design is not rotatabl
¢ but the absence of this desi

- i t the 15 desirable property m
o s::irl;y thf:1 desire to. have a cuboidal inference region and also l?y tll)ler?;vinay l?e
cezter efata TESOUrees. The face-centered cube design requires fewer runs a%st]in
variancpozn; of Fhe design than does the central composite design to achieve a stable
varian ge:edetsltllr?atec:-values throughout the design region. However, it should bz

- at replicate runs are needed at som ign poi ’

: e design point ' i
rem . point or points to esti-
1?"Gl(:t(f:n’:xpempental error variance. A face-centered cube design for Shree or n:csatr!
factor rciqulres' fewer treatment combinations than the 3™ factorials; thus, it ¥

er alternative to the 3" design, requiring fewer experimental units , E

Box—Behnken Designs Another Alternative to 3™ Factorials

A _ ) . -
poizs; ;fghree 1;\;;1 l:ie]jlgns to estimate second-order response surfaces was pro
ox and Behnken (1960). The designs a .

oo o Dox and Behnken (196 signs are rotatable, or nearly so, with a
: perimental units compared to the 37 desi

rece o . : e 3" designs. The de-

f(f- :Ozrl]r;rzoilped by combmmg 2" designs with incomptete block des?ons Detaiels

o cor trea(;r:l(::“c:gnl:l;c. fotlfnd in Box and Draper (1987). The coded fzct"Jr levels
: inations required in a design for th i

« ree factors are show
isplay 13.2. A complete set of treatment combinations for a 22 factorial occursn ﬂl)r:'

each pair of factors accompani
! pa panied by the 0 level of the ini
replications of the design center (0,0,...,0) are includer:lrmnam]ng fretors. Severa!
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Display 13.2 Box—Behnken Design Coordinates 72
for a Three-Factor Design kZ Tk = 0 1Fj=0,1,2,...,n (13.5)
=1
Factor A B C 2. The fraction of the total sum of squares for each design variable contributed by
Coded Lovel = SUz - every block must be equal to the fraction of the total observations placed in the
1 7 0 3:211;:]1;:5, ;he follow.mg relationship must hold between the design variables and
52 factorial +1 1 0 r of observations for every block:
for 4 and B -1 +1 0 L
+1 +1 0 E::l Tk o
—1 0 -1 N N tThLen (13.6)
2 factorial  +1 0 -1 P
for A and C -1 0 +1
41 0 41 A suggested strategy. for blocking the central composite design places the N f;
5 — — treatments for the 2'" design and m; design center points in one block and the N,
22 factorial 0 41 1 :ﬁ:rllgt;;?:;esnatfisgéght }::t}wc;f::fndie.nter points in a second block, This blocking
for Band C 0 1 41 y : ndi lon,.Equatlon (13.5),
o o iy ‘ The C.el‘ltr?,l composite rotatable dBSlgl:l for two factors arranged into two blocks
is s‘hown in Display 13.3. The first block is composed of Ny = 4 treatment combi-
0 0 0 nations of the 22 factorial plus sy = 2 design center points, and the second block
Design center 0 0 0 consists of N, = 4 axial treatment combinations plus m, = 2 design center points
0 -0 0 Tht’: computations required to evaluate the first condition for an orthogonalpbloc};
design are the sums of crossproducts between 1 and x5 in each block. It is easy to
verify that £ 2,25 = 0 in both blocks, ' Y
These designs are spherical rather than cuboidal since the design points fall on
the edges of a cube rather than on the comers like those of the face-centered cube
design. The Box—Behnken design should only be used if one is not interested in Display 13.3 Central Composite Rotatable Design for
predicting responses at the corners of the cuboidal region. Two Factors in Two Incomplete Blocks
Incomplete Block Designs to Increase Precision Factor A B
Incomplete block designs are useful to reduce experimental error variance when the Coded Level 1 *2
number of treatments is large or when the experimental conditions preclude the -1 —1
conduct of complete replications at one time or under the same conditions. +1 =1
Box and Hunter (1957) gave the conditions for blocking second-order response Block 1 =1 +1
surface designs so that the block effects do not affect the estimates of the param- +1 +1
eters for the response surface equation. They showed that two conditions must be 0 0
satisfied for the blocks to be orthogonal to the parameter estimates of the response 0 0
surface equation, Let ny be the number of treatments in the bth block. The two con- 1414 )
ditions necessary are —1.414 0
Block 2 0 1414
1. Each block must be a first-order orthogonal design. For each block the 0 —1414
following relationship must hold for each pair of design variables z; and z;: 0 0
¢ 0
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For the complete design
12 12
2 _ 2 _
>t = > wh =8
k=1 k=1

and for both block 1 and block 2

6 §
Z i, = Z z%k =4
k=1 k=1
The number of treatment observations in blocks 1 and 2 are n; = n»y = 6, and
the total number of observations is N = 12 with a ratio n;/N = 6 /12 =1/2. The
second condition, Equation (13.6), requires that the ratio of the sums of squares of
#, and xo in every block to that for the entire experiment be equal to n; /N For
both block 1 and block 2 the sum of squares ratio is 4/8 = 1/2, which is equivalent
to the ratio for n;/N; the design is orthogonal.
For the second condition to be satisfied the following relationship must hold:

o =n [1“’“] (13.7)
1+ py

where p, = ma/N, and py = my/Ny. For the design to satisfy the two conditions
and be rotatable o« = (27r f/ra)l/ 4 1t is not always possible to find a design that
exactly satisfies Equation (13.7) with a = @"ry /7o), but in practice values of
the design observation numbers can be determined to provide designs with near
orthogonal blocking and rotatability. Box and Draper (1987) provide relative pro-
portions of ry and 7, required for rotatability and orthogonal blocking when
Pa = Pf:

F%lr' the design in Display 13.3 the fraction of design center observations in
each block is p, = py = 1/2 and & = /2.

Evaluating the condition for rotatability and orthogonality in Equation (13.7)

we have
az_n[l+p“l_2{l+_l/[_2} =2
14+pp) ~ L1412

and o = /2 as required for rotatability.

The central composite rotatable designs listed in Table 13.3 can be placed in
useful incomplete block designs for near rotatable and orthogonal central composite
designs. The 2" factorial or 2%7°7 fractional factorial is placed in one or more
incomplete blocks and the axial treatment combinations are placed in one separate
block. For the designs listed in Table 13.3 the number of blocks for the 2" factorial
or fractional factorial, and a suggested number of design center points in each block
are shown in Table 13.4.
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Table 1.3.4 Incomplete block designs for near rotatable and orthogonal central
composite designs

Number of Factors 2 3 4 5 5 6 6
Fraction of 2* I 1 1 1 [ 1
N; 3 g T v R T R
my | 2 2 2 4 2 2 2
Number of Blocks* 1 2 2 4 1 8 2
o 1414 1.682 2000 2378 2.000 2828 2.378
N, 4 6 8 10 10 12 12
Ma 2 2 1 1 4 1 4

*See Appendix 11A for defini i i y ; i
pomonlpp ing contrasts to block the 27 factorial or fractional factorial design

Reducing the Number of Design Points

The expense, difficulty, or time consumption with certain types of experiments may
necessitate reducing the experiment size. The amount of reduction is limited by the
statistical model to estimate the response surface. The second-order response sur-
face equation for n factors has a constant term, » linear terms, n quadratic terms
an_d .n(n — 1)/2 interaction terms for a total of (n + 1)(n + 2)/2 terms. Thus thé
minimum number of points a design could have to estimate the second-orde; re-
sponse surface is (n + 1)(n + 2)/2.

- Designs have been developed to have as close to the minimum number of
p'omts as possible to estimate the second-order response surface. Tables of these de-
signs or methods to construct them can be found in Box and Draper (1974)
Roquemore (1976), Notz (1982), Draper (1985), Draper and Lin (1990), and Myer;
and Montgomery (1995}, ' j

. Most of the designs are based on 2"? fractional factorials augmented with de-
sign points to estimate second-order response surface models. In most cases the de-
signs are saturated with few or no replicated design points. An independent
estimate of experimental error is required to test the efficacy of the response surface
model, unless the design is replicated. In addition, the saturated designs do not al-
low a test for lack of fit of the hypothesized second-order response sur?‘ace model.

An Evaluation of Response Surface Designs

Myers et al. (1992) used the prediction variance of the second-order response sur-
fac? equation to evaluate many of the popular second-order response surface
designs. A design was considered superior if the variance of predicted values was
smaller than that of other designs.

.The central composite designs were found superior in general over spherical
regions covered by the design points (see Figure 13.5). When designs were re-
stricted to the cuboidal regions (a = 1 in Figure 13.5), the resulting face-centered
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13.4 Quadratic Response Surface Estimation

cube design formed by the central composite design was found generally supetior
to the Box—Behnken design in the cuboidal region.

Among the saturated designs, the designs by Rogquemore {1976), Notz (1982),
and Box and Draper (1974) were found quite efficient relative to others that were
evaluated.

Myers and Montgomery (1995) presented design efficiencies for estimating
model coefficients and for prediction variances in a spherical region. Their general
conclusions were that central composite and Box-Behnken designs were quite effi-
cient as were some of the saturated designs from Roquemore (1976).

When the supposed region of optimum response has been identified by the method
of steepest ascent or other methods of experimentation it is often necessary to char-
acterize the response surface in that region of the factors. Using the designs de-
scribed in the previous section, experiments can be conducted to obtain data for
estimating a quadratic approximation to the response surface,

The estimated response equation will enable the researcher to locate a station-
ary response point that could be a maximum, a minimum, or a saddle point on the
surface. An examination of the contour plot will indicate how sensitive the re-
sponse variable is to each of the factors and to what degree the factors interplay as
they affect the response variable.

% Example 13.3 Tool Life Response to Lathe Velocity and Cutting Depth
% A pew cutting tool available from a vendor was going to be used by a com-
= pany. The vendor claimed the new model tool would reduce production costs
= because it would last longer than the old model; thus, tool replacement cost
= would be reduced. The life of a metal cutting tool is dependent on several
g: operating conditions, including the speed of the lathe and the depth of the cut
éé made by the tool.

= The plant engineer had determined from previous studies that maximum
= tool life was achieved for the current tool with a lathe velocity setting of 400
= and a cutting depth setting of 0.075. The engineer wanted to determine the
.= optimum settings required for the new tool. A central composite design was
ﬁ used for an experiment to characterize the life of the new tool under varying
iﬁ“f*%; lathe speeds and cutting depths within the region of current optimum operat-

4
i

ing conditions for maximum tool life. The data from the experiment are
_shown in Table 13.5.

il

i
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Table 13.5 Observed tool life from i i
' a factorial experiment with lath
cutting depth treatment factors in a central composite design e speed and

Original Factors Coded Factors
Lathe Speed  Cutting Depth e Ta Tool L
600 0.100 P R 154yfe
600 0.050 +1 -1 132
200 0.100 -1 +1 166
200 0.050 -1 -1 83
683 0.075 V2 ] 156
117 0.075 -2 0 144
400 0.110 0 V2 166
400 0.040 0 -2 91
400 0.075 ] 0 167
400 0.075 0 0 175
400 0.075 0 0 170
400 0.075 ¢ 0 176
400 0.075 0 0 156
400 0.075 0 0 170

The Estimated Response Surface Equation

The second-order response surface model of Equation (13.2) is fit to the data by
least squares regression procedures. The equation can be estimated by an acaom}
guter progtam for regr.essif)n ar}alysis. A brief account of least squares esti);nation
or regression models is given in Appendix 13A.1. A detailed presentation of re-

gression analysis can be found in Rawlin i
) g3 (1988). The estimated se - -
sponse surface equation for tool life from the data in Table 13.5 is Fond-order re

Y =169+ 6. :
7 +6.747z1 + 26.3852; — 10.875z] — 2162522 — 15250z

Sum of Squares Partitions for the Regression Analysis

The }s}um of squares partitions in the analysis of variance for the regression model
are shown in Table 13.6. The sum of squares for the full second-order model is

SSR([L’], Ty, :].,"%,IL’%, .’L‘lﬂ’,‘g) = 10,946

The regression sum of squares is partitioned into reductions for linear and

quadratic components of the model usin inci
g the principle of
model sum of squares partitions. privelple of reduced model and ful

The partition for the linear components of the model, 2, and z, or

S8 R{z, x3) = 5,933
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Table 13.6  Analysis of variance for quadratic response surface model

Source of Degrees of Sum of Mean

Variation Freedom Squares Square

Total 13 11,317

Regression 5 10,946 2,189.2
Linear (xy, ©2) 2 5,933 2,966.5
Quadratic (%, 23, 7172) 3 5,013 1,671.0

Error 8 371 46.4
Lack of Fit 3 111 37.0
Pure Error 5 260 52.0

is the regression sum ©
By + Py + Paxs + €. The

f squares for the reduced first-order model y =
partition for the quadratic components is the difference

between the regression sum of squares

for the full model and the reduced muodel, or

SSR(z?, 2%, m13a | 21, 72) = 10,946 — 5,93

3 =35,013

The sum of squares for error, 8SE = 371, is partitioned
squares for pure experimental error, S5 E(pure error)

into two parts. The sum of
=260, with 5 degrees of

freedom is computed from th

¢ six replicate observations at the center of the design

with factor coordinates (V, D} = (400,0.075). The remaining 3 degrees of free-
dom sum of squares for error, S SE(Lack of fit) = 111, can be attributed to error in
specification of the response surface model, referred to as lack of fit, or it can be

attributed to experimental error. Since

the six center points of the design provide an

estimate of pure experimental error, the sum of squares designated as lack of fit can
be used to test the significance of lack of fit to the quadratic model.

Tests of Hypotheses About the Second-Order Model

The hypotheses of interest in the analysis are

s Significance of the complete second-order model:

Hq: 51=!32=511=ﬁ22=;912=0
2,189.2
52

D= =42.1 Reject Hp since Fo

> F.o5!5,5 =5.05
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o Significance of linear components for the model:

Hy pr=p=0

_2,966.5 .
b= = 57.0 Reject Hy since Fyy > Fpsa5 = 5.79

o Significance of quadratic deviations from the linear model:

Ho: pu=Paa=p52=0

P 1,671 )
0= = 32.1 Reject Hy since Fy > Fps35 = 5.41
e Significance of lack of fit to the quadratic model:

37
Fy = 5= 0.71 Do not reject Hy since Fyy < Fgs35 = 5.41

The d:on'nplete qu.adratic_ regression mode] is significant, and the lack of fit to the

g::aa d::;lcl:artzodel is qot sEgmficant; thus, we can conclude the second-order model is
-approximation to the true response surface. A

‘ ; . A contour plot of th -

dr_atlc response surface model depicted in Figure 13.6 shows a megcimum sflr(tl'ua

with a maximum tool life in the middle of the center contour. e

Xy
1.50

0.75 4

0.00

—0.74

-0.76 0.00 0.75 1.50
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The coordinates of the contour plot are displayed for the coded values of the
two factors. The orientation of the contours indicates some interaction between
lathe speed z; and cuiting depth 3. For example, a constant cutting tool life of 150
can be maintained for faster lathe speeds, increasing z, by decreasing the cutting
depth, decreasing 3.

The contours also indicate the relative sensitivity of tool life to the coded factor
levels z; and z. The tool life contours increase more rapidly toward the maximum
on the coded cutting depth axis z, than they do on the coded lathe speed axis z;.

13.5 Response Surface Exploration

The significant quadratic equation and the contour plot of the equation have given
us a general picture of the relationship between tool life and the two design factors,
lathe speed and cutting depth.

Estimates of the coordinates for the stationary point on the surface and an esti-
mate of the response at the stationary point provide a more specific characterization
of the response surface. Sometimes, it is useful to know the direction and amount of
change to make in one or more of the design factor Jevels to achieve the maximum
change in response.

A more specific characterization of the sensitivity of response to the design
factors can be achieved with the canonical form of the response equation. The Joca-
tion of coordinates for the stationary point and derivation of the canonical form of
the response equation requires some knowledge of calculus and matrix algebra.
However, the results of the computations are understandable when they are dis-
played in graphic form on the contour plot of Figure 13.6.

Locating Coordinates for the Stationary Paint of the Response Surface

The z; and 2, coordinates for the stationary point are obtained from the partial
derivatives of the estimated response function with respect to z; and z2. The esti-
mated response for tool life is

7 = 169 + 6.747x; + 2638522 — 10.87522 — 21.625z% — 15.250z,5;  (13.8)
The partial derivatives are set equal to 0:
8y _ oy

0 — =0
dxy Oy

to produce the equations

2( — 10.875)z; + (— 15.250)z, = — 6.747

( — 15.250)z, +2( — 21.625)m; = — 26.385
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The solutions of the equations for =; and x, are %, = — 0.156 and %,, = 0.665
The_se vaiues. are th.e coordinates for the maximum response on the sur;ace a't th -
stationary point indicated on Figure 13.6. )

The estimated response at the stationary point is found by substituting

s = — 0.156 and %y, = 0.665 into Equati ) . , !
response is s quation (13.8); the estimated stationary point

7, = 169 + 6.747( — 0.156) + 26.385(0.665) — 10.875( — 0.156)"
— 21.625(0.665) — 15.250( — 0.156)(0.665) = 177.25

Given z; = (V' — 400)/200 and z, =
( 2 = (D —0.075)/0.025, the val
(V) and cutting depth (1)) at the stationary point are wlues of athe speed

V = —0.156(200) + 400 = 368.8

and
D = 0.665(0.025) + 0.075 = 0.092

The general solution for a stationa i i
lutic ty point with any number ; vari i
response equation is given in Appendix 13A.2. ’ of @ variables in the

The Canonical Analysis to Simplify the Quadratic Equation

The canonical form of a quadratic equation is an effective aid to visualize th

face and to. determine the relative sensitivity of the response variable to each efSl;nr_
fe}ctors. It is difficult to visualize the surface by examining the estimated c0 ;f y
cients for the normal form of the quadratic response equation. Likewise, it is ?fffl i
cult to -determine the changes in factor levels necessary to produce ; fied
change in the response. wpecified

The canonical analysis rotates the axes of the z; variables to a new coordinat

system, ai?d the center of the new coordinate system is placed at the station re.
sponse point of the surface. The canonical form of the equation for two varial?gs riz-

T=T+MZL+ 2] (13.9)

where 7, ‘amd Zy are the rotated axes’ variables. Notice only the quadratic terms of

the canomcal' variables Z; and Z, are included in the canonical form of the re

sponse equation. An outline of the computations required to obtain the canoni _!

form for the tool life response equation is given in Appendix 13A.3 e
The canonical form for the tool life response equation is -

3= 17725255877 — 6.9222 (13.10)

where the ce_nter of tht.a new coordinate system is located at z; = — 0.156 and
T3 = 0.665 in the original coordinate system shown in Figure 13.6. The
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relationship between the two coordinate systems was determined (Appendix 13A.3)
to be

Z, = 0.4603x; + 0.887725 — 0.5185

Zo = 0.8877x; — 0.4603x2 + 0.4446 (13.11)

Notice the Z; and Zy canonical axes are oriented with the contours of the surface,
The sizes and signs of the ); indicate the type of quadratic response surface that has
been estimated.

The X; coefficients for the tool life surface are A= — 25.58 and
Ay = — 6.92. Examination of the surface in Figure 13.6 reveals that any movement
away from the center of the Z1, Z, coordinate system results in a response de-
crease. Thus, when all A; coefficients are negative the surface is a maximum sur-
face such as that for the too! life surface in Figure 13.6.

If the ); coefficients are positive, then any movement from the center of the
Z1, Z» coordinate system results in a response increase and the surface is a mini-
mum surface as shown in Figure 13.2a. If one coefficient is positive and the other
negative, say A; > 0 and ), < 0, then movement away from (0,0} along the Z;
axis results in an increased response and movement atong the Z; axis results in a
decrease. Thus, the surface is a saddle or minimax at the stationary point as shown
in Figure 13.2d. If one of the \; = 0, the surface is a stationary ridge (Figure 13.2¢)
because the response will not change along the Z; axis.

The lengths of the principal axes of the ellipses formed by the contours are
proportional to | X; | -1/2_ For the tool life surface | —25.58] -1/2 =020 and
| —692 |"1/2= (.38, and the fitted surface is attenuated along the Z axis as seen
in Figure 13.6.

Suppose, for illustration, that lathe speed and cutting depth for maximum tool
life at coordinates x; = — 0.156 and x» = 0.665 were impractical. The least
change in tool life as lathe speed and cutting depth change is exhibited on the sur-
face along the Z; axis direction when Z; = 0. The =; and z» coordinates along the
Z, axis when Z; = 0 can be obtained from the first equation in Equations (13.11).
The least loss in tool life can be found on settings corresponding to values of =
and x; that satisfy 0.4603z; + 0.8877z2 — 0.5185=0.

The coefficients of the z; in Equations (13.11) can provide information about
the relationships of lathe speed and cutting depth to tool life. Consider the
coefficients for the second equation relating Z, to x and w3, Za =
0.8877z; — 0.4603z, -+ 0.4446. The pair of coefficients (0.8877, — 0.4603) indi-
cate a compensation between lathe speed and cutting depth on tool life. An increase
in lathe speed, to some extent, cafn be compensated for by a decrease in cutting
depth along the elongated Z, axis.

The estimated response equation in its original form or in the canonical form 1s
only valid for the region of factor levels included in the experiment. Any attempt 10
estimate the tool life outside of the limits bounded by lathe speeds of 117 and 683
and cutting depths of 0.04 and 0.11 could be quite misleading. An entirely different

13.6 DESIGNS FOR MIXTURES OF INGREDIENTS 447

response model may be necessary to descri i i i
Y ry scribe tool life outside of the region used by

13.6 Designs for Mixtures of Ingredients

tSuom?ntreEt.m;ntt] designs involve two or more factors that are ingredients of a mix

re in which the percentages of the ingredient !
s must sum to 100% of the mi

Therefore, the levels of one factor are not independent of other fact:;r levef!:smlxmre-

Many food products, construction materials, and other commercial |'3roducts

ar f()rm d fl’ g narec I)e_ :;U] 1€ exan ]l es
&l ¥ OMm mixtares r m 1871 dle]lts 1 ]

fabrics with a blend of cotton and polyester fiber

fruit juice blends of orange, pineapple, and apple juices with water

concrete formed from water, aggregate, and cement

fertilizer formulations of nitrogen, phosphorus, and potassium

This section incluldes a brief introduction to selecting designs and estimatin
Eiesponse surface equapons for mixture experiments. Cornell (1990} provides an i -
epth coverage of design and analysis of mixture experiments. | "

Factor Levels Are Proportions of Ingredients

lffatr:latlmzl in tl:ie proportions of the ingredients in mixtures can affect the properties
e end product. Investigations with mixture i

. \ expermnents concentrate on the rela-
tionship of the measured response variable to the relative proportions of the sepa-

rate ingredients present in the product i
factors. product rather than on the total amounts of the

If 21, %3,..., x; are the variables representing the proportions of the % ingredi-

ents or components of the mixture, the values of the x; are constrained such that

0<m<1 i=1,2,...,k (13.12)

and the proportions of the & ingredients in the mixture sum to unity, or

k

L= =
; i=m A m =1 (13.13)
If the propo_rtion of one ingredient is z; = 1, then the other ingredients are ab-
Z(:;tm fr?m the mixture and the product is a pure or single-component mixture. For
b]ends :;paretsxzst—:gﬁpotrl:ent rmxtu're experiment with cofton and polyester fabric
plends 1 e y the proportions z; and zo may have pure cotton fabric, in
ase ;1 = 1 and 29 =0, or a pure polyester fabric, where x; = 0 and
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The vertices of the triangle represent single-component mixtures with one
z; =1 and all others equal to 0. The sides of the triangle represent design coor-
dinates for two-component mixtures with one z; = 0. Design coordinates in the tri-
angle interior represent three-component mixtures with z; > 0, zo > 0, and
z3 > 0. Any combination of component proportions for a mixture experiment must
be on the boundaries or inside the triangle of coordinates in Figure 13.8b.

The axes of the x; variables in the three-variable simplex coordinate system are
shown in Figure 13.9. The axis for component i is the line from the base point
x; =0 and x; = 1/(k — 1) for all other components 7+ ¢ to the vertex, where
z; =1 and z; =0 for j# 4. For example, with the three-component design in
Figure 13.9, the x; axis extends from the base coordinate (0, %, %) to the vertex
coordinate (1,0, 0).

x5 = 1. The allowable values of z; and z; for a two-component mixture design are
coordinate values along the line = + z2 = 1 (shown in Figure 13.7).

Xy + X =1

{0, 0) oy

Figure 13,7 Factor space for a two-component mixture, ; + 73 = |

Depict the Factor Space with a Simplex Coordinate System

The coordinate values for a three-component mixture design are the coordinate
values found on the plane defined by m1 +za + 3 = 1in F'igure 13.8a. 'The geo-
metric description of the factor space for k& componeqts is that of a simplex in
(k — 1) dimensions, The two-dimensional simplex coordmate_ system fpr the three-
component mixture design is shown in Figure 13.8b as an equilateral triangle.

X axis
=1 {a) (0)
(1.0, 0)
) {©.1,0) (0, 2. %) {0,0,1)
A X = Xp=1 X3=1
(1,0,0)
Figure 13.9 Simplex coordinate axes for a three-component mixture with design
coordinates for a {3,2} simplex-lattice design '
Treatment Designs for Mixtures
. Simplex-Lattice Designs
0,0,1 . Y . . .
©.1.0) ¢ ~ ) The array made up of a uniform distribution of design coordinates on the sim-
X2 = = plex coordinate system is known as a Jattice; see Figure 13.9. The simplex-lattice
I designs consist of a lattice of design coordinates constructed to enable the estima-

tion of polynemial response surface equations.
The designation {k,m} is used for a simplex-lattice design with & components
to estimate a polynomial response surface equation of degree m. For example, a

Figure 13.8 Factor space for (a) a three-component mixture, z; + Tz + 33 = |
and (b) a three-component simplex coordinate system
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{3,2} simplex-lattice design has three components in the mixture design to

estimate a quadratic response surface equation,
The proportions of each component included in a {k,m} simplex-lattice 1 L2 Tk
design are
1 2 k+D 1 |
The design consists of all possible combinations of those levels of the x;, where
¥ z; = | for any combination of proportions. 1S k+1) 1
The combinations of mixture proportions shown at each e in Figure 13.9 are 2k 2k %
the coordinate values for a {3,2} simplex-lattice. The proportions for each x; with
m=2arez; =0, %, and 1. It can be seen in Figure 13.9 that ¥ x; = 1 for each
design point.
The {k,2} simplex-lattice design to estimate quadratic response surface equa-
tions only has mixtures on the boundaries of the coordinate system with one or % L e (k1)
2k 2k

more of the components absent from the mixture. The general {k,m} simplex-
Jattice will consist of single-component mixtures, two-component mixtures, and so
forth up to mixtures consisting of at most m components. If m = k, there will be
one mixture at the centroid of the coordinate system in the experiment that contains
all mixture components. For example, the {3,3} simplex-lattice would include the
mixture with component proportions (3, 3, 1) as well as the single-component
mixtures and the two-component mixtures with proportions % and % for the two

components.

The addition of the axial poi i i
points will provide a better distribution of i i
i ' of informat
?roughout t%le expererental region. The three additional design points requi;?cqi
]y ?u%mentmgl t?e4s1mplex-centroid design for three components are (4,1, 1
(§:5: ) and (¢, ¢, ). The complete design is depicted in Figure 13.10 v

Table 13.7 Simplex-lattice desi .
: gns and - ; :
component mixture a simplex-centroid design for a three-

Simplex-Centroid Designs
3,2 ; -
{3,2} Lattice {3,3} Lattice Centroid

X

sign on the simplex coordinate system that

consists of mixtures containing 1,2,3,..., or k components, each in equal

proportions. Consequently, there are k single-component mixtures, all possible

two-component mixtures with proportion % for each component, all possible three-
h component, and so forth up to one

component mixtures with proportion % for eac
k-component mixture with proportion % for each component. The mixtures for the
simplex-centroid design are contrasted with the mixtures for the {3,2} and {33}
simplex-lattice designs in Table 13.7.

The simplex-centroid design is a de
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Augmented Simplex-Centroid Designs
r the simplex-lattice and simplex-centroid designs lie
ace with the exception of one centroid point
More complete mixtures are possible by aug-
th mixtures on the axes of the simplex fac-

The mixture combinations fo
on the edges of the simplex factor sp
that contains all mixture components.
menting the simplex-centroid design wi

tor space.
The design points are positioned on each axis equidistant from the centroid

toward the vertices. A k-component design will have & additional design points
with coordinates
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0,0, 1)

Figure 13.10 Augmented simplex-centroid design for a three-component mixture
experiment

Pseudocomponents for Ingredients with Lower Bounds

Many mixtures require all components Lo be present in at least some minimum pro-
portions. Clearly, concrete requires some minimum proportions of water, cement,
and aggregate. Lower bounds, L;, on component proportions impose the constraint

on the component proportions. Suppose the lower bounds for cement (z), water
(x,), and aggregate (xs) are

010<z 0205z 030<m

and a {3,2} simplex-lattice design is going to be used for the experiment. The
Jower bounds on the component proportions limit the design to a subregion of the
original factor space on the simplex shown in Figure 13.9 or Table 13.7.

To simplify the construction of the design coordinates a set of pseudocom-
ponents are constructed by coding the original component variables to a simplex
coordinate system for the pseudocomponent variables % with constraints
0 <% < 1. If the lower bound for component ¢ is L; and L =X L;, then the
pseudocomponent %; is computed as

~
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A design in the original components can be constructed on the basis of coordinates
for the pseudocomponents that are set up in a regular simplex with ¥ % = 1. The

proporltlons of the original components required for mixtures in the experiment can
be derived by the reverse transformation

@i = Li+%(1 - L)

For the f:oncrete example the lower bounds were £, = 0.106, Ly = 0.20, and
Ly = 0.30 with sum L = 0.10 4 0.20 4 0.30 = 0.60. The pseudocomponents ;re

r — 0.10 - Ty — 0.20 ~ T3 — 0.30

(L‘l = — Ty — ———
0.40 2 0.40 B= 7640

and the transformations back to original component propottions from the pseudo-
components are

71 = 010+ 0.40%, 2 =0204040% =z =030+ 0.40%

T}.le complete design for the concrete mixture experiment is shown in Table 13.8
with value_s for the pseudocomponent coordinates and the original components on
the subregion of the original simplex.

'I:able 13.8. PseuFlocomponent and original component coordinates in a {3,2}
simplex-lattice design for the concrete mixture experiment ,

Pseudocomponents Original Components
Cement Water Aggregate

&
=
5

el

1 0 0 0.50 020 0.30
0 1 0 0.10  0.60 0.30
0 0 1 0.10 020 0.70
% 3 0 0.30  0.40 0.30
i 0 3 030 020 0.50
0 1 : 0.10 040 0.50

. 13.7 Analysis of Mixture Experiments

Canonical Polynomials to Approximate Surfaces

The general form of the polynomial function used to approximate linear response
surfaces is

iy =ﬁﬂ+ﬁ1$1+”'+ﬁkmk (13.16)

The restriction on mixture components, #, + 2+ -+ zy =1, creates a
dependency among the =z; in the lincar function. Multiplying g, by
{xy + z2 + -+ + zi) = | provides a reexpression of the model as
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k k
mi) +Zﬁi‘“i =iz + Baxe -+ Gme (A307)
=1

1=1

Ny=ﬁ0(

i

where 8! = o+ G;, i =12, k. The reexpressed equation with parameters §;
is known as a canonical polynomial. The canonical polynomial and the original
polynomial are equivalent because one is derived from the other and the degree of
the polynomial and the number of components are unchanged upon reexpression.
The quadratic polynomial function used to approxitnate response surfaces is

k k
py = Bo+ Z Biwi + Z Bix? + Z Z Bijziz; (13.18)
i=1 =1 i< 7

The quadratic canonical polynomial produced by enacting the restriction Y z; = 1
is

. ,
py= Y Bmt Y > Bm; (13.19)
i=1 i< i

where 8f = fo + 8 + B and 35 = Py — Bii — Bj;- The new parameters of the
quadratic canonical polynomial for three-mixture components expressed in terms of

the original polynomial parameters are

Bt = P+ + Bu B35 = Po + B2 + Paz B5=pPo+ B+ B
By =PBi—Pu—LFr Ph=PFu—Pu—Px Bsq = faz — Baz — oz

The interpretation of the canonical polynomials is jllustrated with a mixture
experiment on gasoline component blends.

Example 13.4 A Gasoline-Blending Mixture Experiment

The octane of a gasoline blend depends upon the proportions of the various
petroleum components blended to produce the fuel. The objective of most
gasoline-blending studies is to develop a linear blending model to determine
the most profitable blend of gasoline components. Coefficients in the linear
blending model, referred to as blending values, describe the blending be-
havior of a given fuel component. However, the blending composition de-
pends on a number of factors including the quality of the components. Thus,
the linearity of the blending components is lost, and a more complex qua-
dratic or blending component interaction model must be considered.

The analysis of a mixture experiment is illustrated with a gasoline-
blending mixture experiment. To evaluate the need for an interaction blend-
ing model the experiment was designed to estimate the quadratic canonical

polynomial.
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:%ié A mixture experiment was set up to evaluate the effect of three com-
= ‘ponlents on the octane ratings of gasoline. The components alkylate (A), light
b str.alght run (B), and reformate (C'), were used in a simplex-centroid ées? n
== with seven mixtures. The octane ratings were determined for two replicagte

% runs of each mixture. The octane ratings for each of the mi
— in Table 13.9. mixtures are shown

Table 13.9  Octane ratings from a mixture experiment on gasoline blends

Components *

T g T3 Yij T

[ 0 0 106.6, 1050 105.80
0 1 0 83.3,81.4 82.35
(1} (]) I 99.4,91.4 95.40
; : 0 94.1,91.4 92.75
3 0 3 101.9, 98.0 99.95
(1) % . 92.3, 86.5 89.40
i i 3 96.3,91.7 94.00

;xl = alkylate. 22 = light straight run, z; = reformate
ource: R. D. Snee (1981), Developi i e i i
gy 119_13&( ). Developing blending models for gasoline and other mixtures. Techno-

Estimating the Quadratic Canonical Polynomial Response Surface Model

Folr conv.erllience the asterisk will be dropped from the cdéfﬁcients in the canonical
polynomial equations. The full quadratic canonical polvnomial
gasoline-blending experiment is Posmomizl model for the

Yig = B1z1; -+ Boxry; + Baas + Brazijze; + Brawiywa; + Brazajirs; + e
i=1,2,.t j=12,...r (13.20)

w‘here the experimental errors e;; are assumed to be independent and normally dis-
trlbgted with mean 0 and variance o®. Also, t = 7 mixture treatments and i— 2
replications per mixture produce a total of N = v¢ = 14 observations -

The hypothesis of initial interest is whether the response depenc‘ls on the mix-
ture components according to the quadratic model. When the nuil hypothesis is true
the mean response is adequately described by the reduced model y;; = B+ e
where fi = o = = fyand 13 = B3 = Boz = 0. T

An analysis of variance of the data in Table 13.9 for the mixture treatments in
a completely randomized design will provide an estimate of pure experimental er-
ror. The sum of squares among the mixtures is
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t Table 13.10  Analysis of variance for mi i i
o Z - g‘)‘z o r mixture experiment with gasoline blends
=1
Source of . Degrees of Sum of
with (£ — 1) = 6 degrees of freedom. The sum of squares for experimental error is i fresdon Saares S
S
! B > Tre;tments. 6 669.32 111?15“5”8
o Z Z(yij R egression 5 669.29 133.86
>3 Lack of fit 1 0.03 0.
7 | . . 03
with (I — t) = 7 degrees of freedom. Thus, the mean square for experimental er- — 7 = =

ror is MSE = 10.53 with 7 degrees of freedom.

The least squares estimates of the parameters for the canonical polynomials re-
quire a fit to 2 regression model without the usual intercept term Bp. Many com-
puter regression programs have the capability to fit the regression model without
the intercept term, and they will provide the correct least squares estimates of the
parameters for the canonical polynomials.

The estimated full quadratic gquation is

7 = 105.8z; + 82314 + 95413 — 5.124T3 — 2.4z za + 23323 (13.21)

with experimental error sum of squares SSEj = 73.76 with 14 — 6 = 8 degrees of
freedom.

Tests of Hypotheses About the Model

A Test for the Complete Model

If the response does not depend on the mixture components, the fully reduced
model is yi; = o + € and the surface has a constant height. The expetimental er-
ror sum of squares for this reduced model is :

4 r
98B, =Y. >y~ ' =740
-1 =1
with N — 1 = 13 degrees of freedom.
The sum of squares reduction for the full guadratic response surface model is

SSR =SSE.—SSE; = 743.05 — 73.76 = 669.29

with 13 — 8 = 5 degrees of freedom. The sum of squares for the quadratic model
accounts for 5 of the 6 degrees of freedom for treatments with 1 degree of freedom
remaining for lack of fit to the quadratic model. The analysis of variance is sum-
marized in Table 13.10.

The null hypothesis for the quadrafic responsc equation is Ho: ==
By =fF and fro= fia = Pz = 0. The test statistic Fo = MSR/MSE =
133.86/10.53 = 12.71 exceeds the critical value of Fossg = 3.97, and the null hy-
pothesis is rejected.

A Test for the Quadratic Terms

essar'{/htz Zl;::é;g;:;e\:ﬁuld want to know whether the full quadratic model is nec-
N he_ response surface or whether the linear surface is adequate
o e a (:;r;s'Lpr?:tween octane rating and the component mixtures. A
o commone n)?; ) tlslls 0: B2 = Bia = Bag = 0 will determine whether the qua-
neinle o be uo ) e Bnodel are necessary. The full model and reduced model
principle ¢ sed to etermme the significance of the guadratic components

s of squares for experimental error are required from the full quadrati(;

model and the reduced linear model y;; =
mated reduced model linear equation isylj oy Py Pty & e The et

7= 105.1z; + 82.1m2 + 95 523 (13.22)

with experimental error sum of squares S5 £y, = 77.37 with 14 — 3 = 11 deg
} -3 = rees

f eedom. he sum Of Sq res leduct’l(!" (1 1€ ‘(! []le (lllail i | e 2 T
8 I] I ua i

S5 R(quadratic) = SSEy, — SSE; = 7737~ 73.76 = 3.61

with 11 — 8 = 3 degrees of freedom wi
= ith M S R(quadratic) = 3.61/3 =1 '
ie;t s;:t:st:c Fy = M R(quadratic)/ MSE = 120/10.53 = 0.11 \\/rith cri'tzigélT:s?
,t:,h n Fy > f‘_gs,g:,q- = 4,35 is not significant, and the quadratic terms do not improve
ble approxmatifm of the model to the mixture response surface. Thus, a i
ending model is adequate for this set of blending components ' S

A Test for the Linear Terms

oressi(?rl,n;: ntl};e ?uadratic components of the model account for very little of the re

g of squares it is fairly obvious the linear term :
! s account for most of th

sum of squares for the regression model. A formal test of the null hypothesis #, f?

o-

A1 = B3 = Py = By is derived fi
ro v .
model as the sum of squares reduction for the linear

SSR(linear) = SSE,. — §5Ey;, =T743.05 — 77.37 = 665.68
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with 13 — 11 = 2 degrees of freedom with M SR(linear) = 665.68/2 = 332.54,
The test statistic is Fo= MSR(linear)/MSE = 332.84/10.53 =31.61 with
critical region Fy > Fosa7 = 4.74, and the null hypothesis is rejected.

(13.12). A nonlinear quadratic blending of the two components with Pra > 0 s
12 L

shown by the response curve u, =
. g = PT1 + foxy + prazizs. Th i
represents the height of the curve when =; = 1 and =10 2am:l 22 iggf:éﬁ?: tﬁé

hei
ight of the curve when , = 0 and z3 = 1. The 3,322, term contributes to the

res
ponse whenever z; > 0 and 3 > 0. The maximum departure from the linear

blendin S |
g occurs at 7y = 1y = 3 when Fypmizy = 1812, The blending of the two

components in Figure 13.12 is said to be synergistic because the response for the

I: 1 mi =z =1 i
mixture at ) = &y = 5 exceeds the simple average of the pure mixtures de-

g;cte[f. by Iihe linear blending line. If the coefficient 515 were negative the nonkin
ending line would fall below that of the linear blending line and the s
would be antagonistic to one another, components

Interpretations for the Estimated Response Equation

The estimated linear canonical polynomial, § = 105.1z; + 82.122 +95.533 in
Equation (13.22), provides a significant and adequate fit to the mixture response
surface. The estimated standard error for each of the 3, determined from the regres-
sion program is sz = 1.8, and the individual coefficient estimates are significant
by the Student £ test, £p = B./ s, with 7 degrees of freedom. 1

The coefficient J; is the estimated response at the vertex of the simplex design
representing the mixture with 100% of that component or the single-component

mixture. Alternatively, it represents the estimated response at the maximum value Ky

for that component. The variables for Example 13.4 were the proportions

x, = alkylate, z3 = light straight run, and z; = reformate. For example, with

100% alkylate and 0% each of light straight run and reformate the estimated octane Ho= ByX; + PaXy + ProXeX
rating is § = 105.1. Likewise, with 100% light straight run the estimated octane is B4 \(

7 = 82.1, and with 100% reformate the estimated octane is § = 95.5. The estimated
linear surface is depicted in Figure 13.11.

¥=105.1 K= By + Poxy

X 1

. A |
, =955
\ R N d 1 0
; y=821 X o 1 1
! ; z
Figure 13.12 Comparison of linear i ;
and
miXture system nonlinear blending for a two-component
xz =1 x3=1
Figure 13.11 Estimated linear surface for the gasoline-blending mixture " EXERCISES FOR CHAPTER 13
experiment o
The (; describe the departures from the linear response surface. An illustration % 1. A2?factorial experiment was conducted to determi
. . . . oy ermine wheth
of a quadratic response for a two-component system 18 depicted in Figure 13.12. If effect on the ability of an assay method to measure“iefrel:r;?e Volun}e of two Teagents had an
the two components are additive, with a linear blending of the two components the replications of the treatments were tested in a completely random?zeszge;lﬁ‘c dl’ughln serum, Two
esign with two additional

mean response is = Bz1 + Paia (shown as the straight line blending in Figure




460 CHAPTER 13 RESPONSE SURFACE DESIGNS

replications at the center of the design. The serum for each test was sampled from a serum pool
spiked with a single dose of the drug. The data are shown next with reagent volumes in pl.

Reagent
A B 9% Drug Recovered
10 20 32,35
40 20 44, 47
10 50 51,53
40 50 68,72
25 35 48,53

a. [Estimate the experimental error variance.
b, Estimate the linear response equation and standard ervors of the coefficient estimates, Are the

linear effects of the reagents significant?

¢ Estimate (2 for AB interaction and standard error of the estimate. Is there significant
interaction?

d. Estimate the departure from a linear surface, 811 + 2, and standard error of the estimate. Is

there a significant departure from a linear surface?
e. Determine the first five steps on the path of steepest ascent from the center of the design with
steps of one unit in z; for reagent A. Show the levels of both factors at each step.

Consider the experiment on vinylation of methyl glucoside in Example 13.1. Suppose the chemist
has observed a maximum response at T = 175°C and P = 475.5 psi via the path of steepest ascent
in Table 13.2. Use those levels as the average factor levels in Equation (13.4), and design a central
composite rotatable design to estimate the quadratic response surface equation. Show the actual
levels of 7" and P required for each treatment combination in the design.

Show the coded design coordinates required for a uniform precision rotatable central composite
design with four factors.

Describe the response surface for the following canonical forms given for quadratic response
surfaces:

a =100 2} — 272
b, = 50+22}
c. §=75+2}-2Z;

An animal scientist studied the relationship between metabolism of methionine, a sulfur amino
acid, and carotene, vitamin A, as they affect the growth of chickens. The optimum levels of
methionine and carotene were thought to be 0.9% methionine in the diet and 50 micrograms
carotene per day. A ceniral composite rotatable design was used for the experiment. Eight chicks
were randomly assigned to each of the treatment diets, and their weight gains were recorded after
38 days. The average weight gains for the ireatments follow.

EXERCISES 461

Original Factors Coded Factors
Methionine Carotene T Ty Weight Gain

1,183 85.36 +1 +1 445
1.183 14.64 +1 -1 331
0.617 8536 -1 +1 443
0.617 14.64 -1 -1 336
1.183 50.00 \/i 0 414
0.500 50.00 -2 0 389
0.900  100.00 0 2 435
0.900 0.00 0 -2 225
0.900 50.00 0 0 442
0.900 50.00 0 0 412
0.900 50.00 0 4] 418
0.900 50.00 0 0 440
0.900 50.00 0 0 441

a. Estimate the quadratic response surface i i i
> quad equation for weight gain, and summari
squares partitions in an analysis of variance table. arize the sum of
b. Tes; the 51gm.ﬁcz.mce of the complete quadratic model, the quadratic deviations from the linear
model, _the significance of the linear components of the model, and the lack of fit t th
quadratic model. What are your conclusions? o
c. Thehr.esgonse surface has a maximum within the design coordinates. Determine the levels of
methionine and carotene that produce the maximum response, and estimate th i
i \ e maximum
d. gomgute the canonlical equation (see Appendix 13A.3), and describe the response surface
ased on the canonical equation, what is the relationship between methionine and carotene‘;
Can one be used to compensate for the other in the animal’s diet? .

Tlhe experiment on \_rinylation of methyl glucoside used in Example 13.1 (Marvel et al., 1969) in-
(_} ;Jded fourt factors in a central composite rotatable design placed in an incomplete bl;ck design
e percent conversion of methyl glucoside to a vinylation i :
. product was the respons

interest. The actual and coded levels of the four factors used in the experiment well')e ° variable of

Coded Level -2 -1 0 ! 2
] Time, hours 1 3 5 7 9
Tz Temperature, °C 115 130 145 160 175
3 Pressure, psi 250 325 400 475 550

Ty Solvent ratio {water/dioxane) 95 80 65 50 35

The percent conversion of methyl i i i
vl ghicoside to a vinylation product for each treatment inati
] - - - C
in the experiment is shown in the table that follows: embimatien
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Block ! Block 2 7 Block 3 specimen from each replication was subjected to a strength test. A simplex-latti i
‘. Y 1 €9 T3 T4 Yy % T3 T3 T4 Y T Ta T3 T4 for the experiment, The strength data with rﬁixture proportions 'for pdex— attice design was use‘d
‘ 0 -1 —1 =1 =1 56 —1 1 1 1 13 -2 0 0 0 the pseudocomponent for sulfur, z, for asphalt, and z; for sand, ft “PSeu ocomponents, where x| is
!z 21 1 1 -1 -1 7 -1 -1 =1 1 43 2 0 0 0 ’ ’ ne, Totiow.
i 5 —1 -1 1 1 35 1 1 1 -1 2 0 -2 0 0 Pseudoc
:\ 46 1 1 1 1 27 -t 1 1 52 0 2 0 0 T xzmpon;: B M

6 1 -1 -1 1 19 1] -1 -1 =1 18 0 0 =2 0 1 0 0 ﬁ

16 1 -1 1 -1 52 ] 1 -1 \ 52 o 0 2 0 0 1 0 24 3.6

S T A T R o o0 0 =2 0o 0 1 26 43

18 —1 1 -1 1 24 -1 ] -1 —1 58 0 0 0o 2 05 05 0 189, 16.8

4 o o o 0 33 0 0 0o 0 3 0 00 0 0.5 0 05 194, 17.1

31 0 0 o 0 30 g o o 0 39 0 0 0 0 0 05 05 4.6, ’7_3 ’

a. FEstimate the quadratic response surface equation for percent conversion, and summarize the a. Given the minimum values for sulfur, asphalt, and sand, determi
sum of squares partitions in an analysis of variance table. the three components for each of the tr,eatm ent’mixtures 1n t‘li crmine the actual proportions for
b. Test the significance of the complete quadratic model, the quadratic deviations from the linear b. Estimate the experimental error variance ¢ experiment.
c.

model, the significance of the linear components of the model, and the lack of fit to the qua-
dratic model. What are your conclusions?

¢. Determine the factor levels that produce the maximum response with the quadratic model. Is
the optimusn within the current design factor levels?

d. Compute the canonica! equation from the quadratic model estimates (see Appendix 13A.3),
and describe the response surface. Based on the canonical equation, what type of surface has
been estimated?

Estimate the linear and quadratic r
esponse surface polynomial. Determin igni
1 Jua . e the sig
the linear terms and the significance of the quadratic addition to the model gnificance of
d. Interpret the coefficients in the model. .

13A.1 Appendix: L i

Jd £ : Least Squares Estimation i
of Regression

Models 9

7. Construct an incomplete block design for a central composite design with three treatment factors

such that the conditions in Equations (13.5) and (13.6) are satisfied. What is the value of required
for the relationship to hold in Equation (13.7)?

The lgast squares esti:mation of parameters for the regression model follows the
;;roce ures illustrated in previous chapters for vartous experiment designs. The dif-
erence to be noted for the regression model is the inclusion of the continuous value

x; variables in the model that were not seen previously in the experiment design

8. An experiment is planned to evaluate the flavor quality of a fruit juice containing orange, pine-
models.

apple, lime, and papaya juices. The minimum allowable proportions of the four juices in the mix
are orange > .15, pineapple > .10, lime > .10, and papaya > 20, Design a mixture experiment
with a simplex-lattice design. List the design both as pseudocomponents and as original

components.

EStimatlDI‘l IS illllStl‘aT.ed fOl‘ a model W' WO I; var al) s I I
X ]th t QX i i

¥ = fozoy + Bz + gy +e; F=1,2,...,n.

9, A highway-paving mixture is formed by dispersing liquid sulfur into lquid asphait to produce a
sulfur—asphalt binder. The binder is then mixed with sand to produce the paving mixture. A mix-
ture experiment is to be conducted with a minimum of 5% sulfur and a minimum of 10% asphalt.
a, Design the mixture experiment with a simplex-centroid design. Show the design as pseudo-

components and as original components. :
b. Construct the design as an augmented simplex-centroid. Show the pseudocomponents and
original components.

The 1nterce1?t or lconst.ant term for the mode! written in the general form as Fyxg; is
most often identified in the model only as 3, since the variable xy; takes on a cgn—
stant value zg; = 1 for all observations, ’

The least squares estimators fi [
. or the regression ¢ i
Gfforensatin, g oefficients are found by

el = (y; — foxos — Pizy; — Pazyy)’

. . j=1 =
10. A mixture experiment was conducted with the sulfur—asphalt binder described in Exercise 13.9. ! =t
The experiment was conducted with a minimum of 10% sulfur, a minimum of 20% asphalt, and a

minimum of 50% sand in the mixtures. Two replications of each mixture were prepared, and a

2 g
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a n
3 = -2 ;woj(yj — Bozo; — Prar; — Baxe)) =0
6 n
ah 2 miily; — Pomo; — Fryy = Brioas) =0
1 =1
B n
N ZZ 2ay(y; — Poa; — Przy; — Famas) =0
2 i=1

The resulting normal equations are

B, % mﬁj + By Taggm; + By T zajta; = L Tojy;
By % oz + [ m%j + By Tmiy82) = o135

By = mojza; + By Sy + By Ty = Loy

The simuitaneous solutions of equations for the A, result in the least squares
estimators for the §;. The estimates for a given problem can be obtained with any
statistical computing package that includes a program for muitiple linear regression.

The interested reader can find a detailed account of regression analysis
methodology in Rawlings (1988). A brief outline of the model formulation, con-
struction of the normal equations, and solutions to the normal equations are given
here assuming some knowledge of matrix notation. The multiple linear regression
model can be written in matrix form as

y=XpP+e
where
9 1 znn - i\ Ba £1
I B [ R A
Yo 1 i o g 2 e

Denoting X' as the transpose of the X matrix the normal equations in matrix form
are

XXB=Xy

where

APPENDIX 465

n 2 . Ty e pH: Xy
Yr, Yol Dxzy - Bz
: 1Z% z
XX = E..’L'g Lxze  Dxs - Dagwg Xy= Z‘Z;y
: : : . : -
Trp Dapre Lzary - E:ci Enz:ky

The solutions to the normal equations for 3 are found by multiplying both sides of

the nort ]ﬂl equatlonS b the mverse matrix fOI "
y
) ) X X denoted (X X) . Ihe sSOu

B=XX)y"Xy
The computations are illustrated with data for two independent variables,
k) 1

and mp, to estimate the coefficients for the first-order

B, + Bix; + Faza + e. The data matrices are model y =

Y =[41, 52, 54, 73, 66, 67, 7T9]

|

(7 28 14 432
X'X=[28 140 63| X'y= [1,334]

14 63 32 921

1
X =11
1

[
e
WO —
oo =
b S =
L BN

(X'X)y =] -003 006 -0.11
| 044 —011 044

[ Li6 —0.03 —0.44}

The solution to the normal equations is

) .16 —0.03 —0447 [ 432

. . 31.43

B=(X'Xy'Xy= { —003 006 —0.11{ |1,884| =1 3.57
—044 —011 044 | 921 8.00

The esti ion is 7, = 7 g I
: est:rr}ated equation is §; = Syxo + F174; + -+ + Fxy;, and the sum of squares
or experimental error for the full regression model is calculated as

SSEs = 9. = (- XBY B=vy-F
1 Zlcy 1 =w-XBy-XP=vy-B X'y

n
_ 2_ %3 = 3
= ,Z-; Y5 — Bo2y; ~ B Bmyy; — - — Bylaggy;

with n — k — 1 degrees of freedom,
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The reduced model without the variables =z;,i=12,...,k s
y; = Powo; + €5 = p+ ej. The estimated regression equation with the reduced

model is §; = ﬁgwg. The sum of squares for experimental error for the reduced
model is

n n

n
SSE =3 -9y = vi-Bo) U
=1 =1 5=t
with n — 1 degrees of freedom,
- L3
For the reduced model 3, =¥ and SSE; = Sy — 7 )°. The sum of squares
i=L
for regression due to the inclusion of the independent variables z;,i = 1,2,..., k,
in the model is

SSR=S8SE.— SSEy

with k degrees of freedom.
Given Dy? = 27,716, the experimental error sum of squares for the full model

of the example is
SSE; = 27,716 — 31.43(432) — 3.57(1,884) — 3.0(921) = 444

with m—k—1=7—2— 1 =4 degrees of freedom. The estimate of 3y for the
reduced model is § =61.7, and the experimental error sum of squares is
SSE, = 1055.4. The sum of squares for regression is

SSR =10554—444=1011.0

with & = 2 degrees of freedom.

Appendix: Location of Coordinates for the Stationary
Point

The estimated quadratic model expressed in matrix form is
=8, +a'b-+z'Bx (13A.1)

where

' =(z1 =z - Tkl ¥ =[5 5
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P‘ﬂﬁll 3’1\2/2 ?13/2 E‘lk/z
€12/2 Aﬁzz ﬁis/z sz/z
B = ﬁ]?f/z 132:?/2 2'3_33 Bﬁk/z

| Bi/2 Buf2 Ba/2 o By
The stationary point is found by setting the derivative of 3 with respect to the =
vector equal to 0,

oy
55 =0+ 2Bz =0 (13A.2)

The vector of design coordinates for the stationary point is the solution to Equation
(13A.2), or

1
@, = — 5}':? % (13A.3)

Substituting the solution into Equation (13A.1), the estimated response at the sta-
tionary point is

o1
Yy =Fy + Em;b (13A.4)

13A.3 Appendix: Canonical Form of the Quadratic Equation

The canonical form of the quadratic response equation is

T=To+ M2} + X5 + -+ A 21 (13A.5)

where the A; are the eigenvalues of the matrix B in Equation (13A.1) and the Z,
are variables associated with the rotated axes that correspond to the axes of the c:oni
tour.s of the response surface. The origin for the rotated coordinate system is the
stationary point with all Z; = 0 and response 7,.

The eigenvalues of B are the roots of the determinantal equation

|B-AI| =0 (13A.6)
where I is the identity matrix. The relationship between the matrix B and the ), is
Bmi =mi)\,- i= ],2,...,k (13A.7)

where the m; are the eigenvectors corresponding to the A;. The m; are normalized
so that mim; = 1.

The relationship between the variables representing the coded factor levels z
and the canonical equation variables Z is
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A = M'(x — z.) (13A.8)

i i {Ors 1785,

 columns of M are the normalized cigenvec . _

Wher’f'l'fzifzfious methods required for the calculations can be founcll in standz;r: rr;_

trix aleebra books such as Graybill {1983). The matrix calculah(lms cinme iﬁus-
formeg with many of the common computer programs. The calculation

trated with the response equation for Example 13.3,

2
7= 169+ 6.747x1 + 26.385z9 — 10.87523 — 21.625x5 — 15252132

The determinantal equation is

— 10875 — A - 7.625 _
—7.625 —21.625 = X

ith A2 +32.54+177.03 =0. The roots of the quadr.atii equatior; 5a‘re A=
WIZS 58 and }:2 — _ 6.92. Thus, the canonical equation with Y, = 17725148

§=17725— 25,5872 — 6.927;

The matrix of normalized eigenvectors is

04603  0.8877
=[o.ss77 — 0.4603

— _0.156 and x5 = 0.665, and the

i i int is _
The coordinate of the stationary pol 1s S e inblen i

relationship between the canonical variables and the €

Z 0.4603 0.8877 1 [(m + 0.156)}
[ZJ - [0.8877 _ 04603 | | (z2 — 0.665)

or

7, = 0.4603(z; +0.156) +0.8877(z2 — 0.665)

Z, = 0.8877(z; + 0.136) — 0.4603(z2 — 0.665)

14

Split-Plot Designs

This chapter introduces the split-plot design for experiments with a factorial treat-
ment design and describes some unique features of the design relative to its struc-
ture, composition of experimental errors, and analysis. The relative efficiency for
split-plot designs is also discussed. Extensions and variations of the design include
the split-split-plot and split-block designs.

14.1 Plots of Different Size in the Same Experiment

One factor sometimes requires more experimental material for its evaluation than a
second factor in factorial experiments. In agronomic or horticultural field trials a
factor such as cultural methods may require the use of equipment that is best-suited
for large plots, whereas another factor in the experiment such as cultivar or fertility
level may be applied easily to a much smaller plot of land. The larger cultural treat-
ment plot, the whole plot, is split into smaller subplots to which the different culti-
vars or fertility treatments are applied. This is known as a split-plot design, and in
this particular example there are two different sizes of experimental units.

The experiment used for the following example illustrates the creation of a
split-plot design when a second factor was introduced to subdivisions of the exist-
ing experimental units for an experiment already in progress,

Example 14.1 Nitrogen Fertilizer and Thatch Accumulation
in Penncross Creeping Bent Grass

The soil for most golf greens is almost pure sand and frequent irrigation and
fertilization are required to maintain the turf. The sandy soil has little capacity
to retain nitrogen, and after fertilization the nitrogen quickly leaches from the
root zone after irrigation. Administering large initial doses of nitrogen to
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