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Chapter 3 

Hypothesis testing 

3.TT Statistical hypothesis te民ing

In Chapter 2, we discussed Qne component of stat 
istical inference, estimating population parame 
ters. We also introduced the philosophical and 
statistical differences bet\Veen frequentist and 
Bayesian approaches to parameter estimation 
The other main component ofinference, and one 
that has dominated the application ofstatistics in 
the biological sciences , is testing hypotheses 
about those parameters. Much of the philosophi 
caljustification for the continued use of statistical 
tests ofhypotheses seems to be based on Popper's 
proposals for falsificationist tests of hypotheses 
(Chapter 1). Although Jerzy Neyman , Egon 
Pearson and Sir Ronald Fisher had developed their 
approaches to statistical testing by the 1930s , it is 
interesting to note that Popper did not formally 
consider statistical tests as a mechanism for fal­
si市ing hypotheses (Mayo 1996). Hilborn & Mangel 
(1997, pp. 15-16) stated that "Popper supplied the 
philosophy and Fisher, Pearson , and colleagues 
supplied the statistics" but the link between 
Popperian falsificationism and statistical tests of 
hypotheses is still controversial, e.g. the contrast­
ing views ofMayo (1996) and Oakes (1986). W.注 will

present a critique of statistical hypothesis tests, 

and significance tests in particular, in Section 3.6 
The remainder of this section will provide an 

overview of statistical tests of hypotheses. 

3.1.1 Classical statistical hypothesis testing 
Classical statistical hypothesis testing rests on tv.ro 
basic concepts. First, we must state a statistical 

null hypothesis (时， which is usually (though not 
necessarily) an hypothesis of no difference or no 
relationship between population parameters 怡.g

no di能rence betv.reen tv.ro population means). In 
many cases , we use the term effect to describe a 
difference betv.reen groups or experimental treat 
ments (or a non-zero regression slope , etc.) , so the 
Ho is usually an hypothesis of no effect. The philo 
sophical basis for the statistical null hypothesis , 

at least in part, relates back to Popperian falsifìca 
tionism , whereby science makes progress by 
severely testing and falsifYing hypotheses. The 
implication is that rejection ofthe statistical Ho is 
equivalent to fal日命ing it and therefore provides 
support ("corroboration") for the research hypoth 
臼is as the only alternative (Underwood 1997). We 
do not test the research hypothesis in this way 
because it is rarely more exact than postulating 
an effect, sometimes in a particul盯 direction

Fisher (1935) pointed out 出at the null hypothesis 
is exact, e.g. a difference of zero , and is the result 
we would expect 仕om randomizing obse凹atlOns

to difl岳rent experimental groups when there is no 
effect ofthe experimental treatment (Mulaik et al 
1997). The philosophical justification for testing 
the null hypothesis is still a controversial issue 
For example , Oakes (1986) argued that support for 
the research hypothesis as a result of the null 
being rejected is not true corroboration and statis­
tical tests , as currently practiced, have only super­
ficial philosophical respectability. 

Second , we must choose a test statistic to test 
the Ho' A test statistic is a random variable and , as 
such, can be described by a probability distribu­
tion. For example , a commonly used test statistic 
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for testing hypotheses about population means is 

~ where: 

t~旦- JL) (3.1) 
5, 

W恒 introduced the t s臼tistic and its probability 
distribution in Chapters 1 and used it inαlapter 
2 for determlmng con且dence intervals for popula­
tion means. Test statistics like t have a number of 
orobability distributions (see Figure 1.2), called 
sampling distributio时， one 自or each possible 
degrees of freedom 仙一 1). These sampling dístrí­
butions represent the probabili戈y distributions of 
t based on repeated random sampling from popu­
lations when the Ho is true and are sometimes 
called central dist口butions. Probabilities ass仔

ciated with particular ranges ofvalues oftest sta 
tistics are tabled in most statistics textbooks. Note 
that test statistics are continuous random vari 
ables , so we cannot define the probability of a 
single tvalue , for example. We can only talk about 
the probability that t is greater (or less than) a 
certain value or that t falls in the range between 
two values 

Be且ore we look at the practical application of 
statistical tests , some consideration of history is 
warranted. The ea均 development of statistical 
hypothesis testing was led primarily by Sir Ronald 
Fisher, whose influence on statisti臼 was enor­
皿ous. Fisher (1954 , 1956) gave us null hypothesis 
or significance testing in statistics with the follow­
ing methodology (Huberty 1993) 

1. Construct a null hypothesis (Ho). 
2. Choose a test statistic that measures devia­

tion 仕om the Ho and that has a known sampling 
distribution (e.g. t statistic) 

3. Collect the data by one or more random 
samples from the population(s) and compare the 
value of the test statistic 仕om your sample(s) to 
its sampling distribution 

4. Determine P value , the associated probabil 
ity of obtaining our sample value of the statistic. 
or one more extreme. ifHo is true 

5. Reject Ho ifP is small; retain Ho otherwise 

Fisher proposed that 、/{e should report the 
actual P valu巳 (e.g. P~ 0.042) , which is a property 
of the data and could be viewed as a "strength of 
evidence" measure against Ho (Huberty 1994) 
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Fisher also introduced the idea of a conventional 
probability (of obtaining our sample data or data 
more extreme ifHo is true) for rejecting Ho; this is 
called a significance level. He suggested a probabil-
1可 of one in twenty (0.05 or 5%) as a convenient 
level and the publication oftables of sampling dis­
tributions for various statistics reinforced this by 
only including tail probabilities beyond these con 
ventional levels (e.g. 0.05 , 0.01 , 0.001). Later , 

however, Fisher (1956) recommended that 缸ed

signifìcance levels (eε0.05) were too restrictive 
and argued that a researcher's significance level 
would depend on circumstances. Fisher also intr任
duced the idea offiducial inference , although this 
approach is rarely used in the biological sciences 

Mayo (1996) and Oakes (1986) provide details 
Jerzy Neyman and Egon Pearson (Neyman & 

Pearson 1928 , 1933) offered a related but slightly 
dif:公rent approach, which has sometimes been 
called statistical hypothesis testíng. Their 
approach differed 仕om Fisher's in a number of 
important ways (Oakes 1986 , Royall 1997) 

1.ηley argued that we should set a level of 
significance (e.g. 0.05) in advance of the data col­
lection and stick with it - this is sometimes 
called 且X巳d level testingηle signifìcance level is 
interpreted as the proportion of times the Ho 
would be wrongly rejected using this decision 
rule ifthe experimentwere repeated many times 
and the Ho was actually true. Under the 
Neyman-Pearson scheme , the Pvalue provides 
no additional information beyond indicating 
whether we should reject the Ho at our speci且ed
significance level (Oakes 1986). They emphasized 
making a dichotomous decision about the Ho 
(reject or nor reject) and the possible errors asso 
ciated 飞<lith that decision (see below) whereas 
Fisher was more concerned with measuring evi­
dence against the Ho' Whether Pvalues provide a 
suitable measure of evidence is a matter of 
debate (e.g. Royall1997) that we will consider 
further in Section 3.6. 

2. Another major difference betwεen the 
Fisher and the Neyman-Pearson approaches was 
that Neyman and Pearson explicitly incorporated 
an alternative hypothesis (H

A
) into their scheme 

The H
A 

is the alternative hypothesis that must be 
true ifthe Ho is false , e.g. ifthe Ho is that two 
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population means are equal, then the HA is that τhe Fisherian aspect of this hybrid approach is probability that a particular hypothesis is true. If level, e.g. 0.05 , if the Ho is actually true in a11 the 
they are different by some amount. In contrast, that some biologists use P<0.05 (significant) , ;"e wish to know the probability ofHo being true, repeated experiments or trials. Aηpe 1 eITor is 
Fisher strongly opposed the idea of HA in P<O.Ol (very signi直cant) and P< 0.001 (highly sig. we need to tackie hypothesis testing 仕Uffi a one of the two possible errors when we make a 
significance testing (Cohen 1990) nificant) or present the actual Pvalues to indicate Bayesian perspective (Berger & Berry 1988; see decision about whether the Ho is likely to be true 

3. Neyman and Pearson developed the con- strength of evidence against the Ho' Although the Section 3.7) or not under the Neyman-Pearson protocol. We 
cepts of巧'Pe I error (long-run probabili可 of latter has been strongly criticized by some in the The P value is aIso sometimes misinterpreted will consider these errors further in Section 3.2 
falsely rejecting Ho' which we denote α) and Type psychological literature (Shaver 1993), there is as the probability of the result of a spe口自c analy. 
II error (long.run probability of falsely not r，句 ect. some logical justi直cation for providing P values sis being due to chance , e.g. a P value of <0.05 3.1.3 Hypothesis tests for a single 
ing Ho' which we denote β) and th臼r apnon (Oakes 1986). For one thing, it allows readers to means that there is a less than 5% probability that population 
significance level (e.g.α~ 0.05) was the long.run use their own a prio门 signifìcance 1εvels to decide the result is due to chance. This is not strictly We will illustrate testing an Ho with the simplest 
probability of a Type I error (Gigerenzer 1993). whether or not to reject the Ho. correct (Shaver 1993); it is the probabili可 of a type of test, the single-parameter t test. We dem 
This led naturally to the concept of power (the To reiterate, interpretations 仕om classical sta- result occurring by chance in the long run ifHo is onstrated the importance of the t distribution for 
probability of correctly rejecting a false Ho) tistical tests are based on a long-run 仕equency true, not the probability of any particular result determining confìdence intervals in Chapter 2. It 
Fisher strongly disagreed with Neyman and interpretation ofprobabiliti凹， i.e. the probability being d ue to chance can also be used for testing hypotheses about 
Pearson about the relevance ofthe two 可1"'s of in a long run of identical "trials" or "experi- Traditionally, biologists are correctly taught single population parameters or about the differ-
error and even criticized Neyman and Pearson ments'\ This implies that we have one or more 出at a non-significant result (not rejecting Ho) ence between two population parameters if 
币。r having no familiarity with practical applica cIearly defined population(s) 仕om which we are does not indicate that Ho is true. as Fisher himself certai口 assumptions about the variable hold. Here 
tion of hypothesis testing in the natural sciences sampling and for which inferences are to be made stressed. In contrast, the Neyman-pearson logic is we will look at the 白rst type of hypotl随时， e.g 
(Oakes 1986)! If there is no definable population 仕om which that Ho and HA are the only alternatives and the does the population mean equal zero? The value 

Statisticians have recently revisited the contr任
random samples are collected , the inferential non-r句ection of Ho implies the acceptance of Ho ofthe parameter specified in the Ho doesn't have 

versy between the Fisher and Neyman-Pearson 
statistics discussed here are more diffìcult to (Gigerenzer 1993), a position apparently adopted to be zero , particularly when the pararneter is a 

approaches to hypothesis testing (Inman 1994, 
interpret since they are based on long-run 仕+ by some textbooks , e.g. Sokal & Rohlf (1995) refer mean, e.g. testing an Ho that the rnean size of an 

lehmann 1993, Mulaik et al. 1997, Royall 1997), 
quencies of occurrence 仕om repeated sampling to the acceptance of Ho. τlle Neyman-Pearson organism is zero makes little biological sense 

pointing out their similarities as well as their dis-
Randomization tests (Section 3.3.2) , which do not approach is really about alternative courses of Sometimes testing an Ho that the mean equals 

agreements and the con且lsion in terminology. 
require random sampling from a population , may actions based on the decision to accept or reject. zero is relevant, e.g. the mean change from before 

Biologists , like psychologists (Gigerenzer 1993), 
be more applicable Accepting the Ho does not imply its truth ,just that to after a treatment equals zero. and testing 

one would take the action that results from such whether other parameters equal zero (e.g. regres-most commonly follow a hybrid approach, com 3.1.2 Associated probability and Type I a decision sion coef:且cients， variance components. etc.) is bining aspects of both Fisherian inference and 
Neyman-Pearson decision-making to statistical 

error Our view is that a statistically non-significant very important. We will consider these pa阻me-
Fisher and Neyman & Pearson both acknowledged result basically means we should suspend judge- ters in later chapters. hypothesis testing 
that probabilities from classical statistical ment and we have no evidence to reject the Ho τ'he general form of the t statistic is 

1. Specify Ho' HA and appropriate test statistic hypothesis testing must be interpreted in the The exception would be ifwe showthat the power 
St- 8 2. Specify a priori significance level (e.g. 0.05) , long.run frequency sense, although the latter of our test to detect a desired alternative hypothe- t 5 = (3.2) 

which is the long.run frequency ofType I errors were more dogmatic about it. The sampling dist口- sis was high , then we can conclude the true effect S" 
(α} we are willing to accept bution ofthe test statistic (e.g. t) gives us the long. is probably less than this spec谊c effect size where St is the value of the statistic 丘om our 

3. Collect the data by one or mOfe random run probabilities of different ranges of t values (Chapter 7). Underwood (1990 , 1999) has argued sample , 8 is the population value against which 
samples 仕om the population(s) and calculate the occurring if we sample repeatedly from a popula- that retention ofthe Ho implies that the research the sample statistic is to be tested (as specified in 
test statistic 仕om our sample data tion(s) in which the Ho is true. The P value, termed hypothesis and model on which it is based are fal. the Ho} and Ss! is the estirnated standard errorofthe 

4. Compare thatvalue ofthe statistic to its the associated probability by Oakes (1986), then is sified (see Chapter 1). In this context, a statistically sample statistic. We will go through an example of 
sampling distribution, assuming Ho true simply the long.run probabili戈Y of obtaining our non-signifìcant result should initiate a process of a statistical test using a one-sample t test 

5. Ifthe probability of obtaining this value or sample test statistic 0γ one more eχtreηle ， if Ho is revising or even replacing the model and devising 
one greater is less than the speci直ed significance true. Therefore , the P value can be expressed as new tests of the new model(s). The philosûphical 1. Speci命 the Ho (e.gμ~ 0) and HA (e.g μ'" 0). 
level (e.g. 0.05), then conclude that the Ho is false p(data I 时， the probabil叼 of observing our basis for interpreting s研cal!ed ‘negati凹， results 2. Take a random sample 仕om a c1early 
and reject it ("significant" result) , sample data. or data more extreme, under continues to be debated in the scienti且c li tera ture de直ned population 

6. Ifthe probability of obtaining this value is repeated identical experiments if the Ho is true. (e.g. see opinion articles by Allchin 1999, Hul! 3.Calculate t=(YO2d )l号s1 from the sample, 
greater than or equal to the specified 币1Îs is not the same as the probability ofHo being 1999 and Ruse 1999 in Marine Ecology Progress wsahmepre le iy mis e the estimate standard error ofthe 
significance level (e.g. 0.05) , then conclude there true , given the observed data - p(Ho I data). As Series) an. Note that ifHo is true. we would 
is no evidence that the Ho is false and retain it Oakes (1986) has pointed out, there is rarely a sen. The Type I error rate is the long.run probabil. expect t to be c10se to zero, i.e. when we sample 
("non.significant" result) sible long.run 丘'equency interpretation for the ity of rejecting the Ho at our chosen significance 仕om a population with a mean of zero, most 

.l........ 
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Probabmty (a) 
'ibutions of t for (a) two-tailed 

and (b) one-tailed tests. showing 
critical t values (飞)1 P(月

α= 0.025 

samples will have means c10se 
to zero. Sample means 
自lrther 仕om zero are less 
likely to occur ifHo is true 
η1e probability of getting a 
sample mean a long way from 
zero, and therefore a large t , 

either positive or negative , is P(t) 

less if the Ho is true. Large t 
values are possible ifHo is 
true - they are just unlikely. 

4. Compare t with the 
sampling distribution of t at 
α= 0.05 (or 0.01 or whatever 
significance level you choose a priori) withη1 
df. Look at the t disttibution in Figure 3.1 
Values of t greater than +t, or less than • tc have 
a less than 0.05 chance of occurring 仕om this t 
distribution , which is the probability 
dist口bution of t when Ho is true. This value (飞)
is sometimes called the critical value. Ifthe 
probabili可 (P value) of obtaining our sample t 
value or one larger is less than 0.05 (our 叫， then

we reject the Ho' Because we can reject Ho in 
either direction, ifμis greater than zero or ifμ 
is less than zero. then large values of the test 
statistic at either end of the sampling 
distribution will result in rejection of Ho (Figure 
3.1)πlÎs is termed a twl耻tailed test (see Section 
3.1.4). To do a test withα= 0.05 , then we reject 
Ho if our t value falls in the regions where P= 
0.025 at each end of the sampling distribution 
(0.025 + 0.025 = 0.05). If the probability (P value) 
of obtaining our t value or one larger is 2:0.05, 

then we do not reject the Ho 

a= 0.025 

(b) 

L t = 0 

a= 0.05 

As mentioned earlier, the sampling distribu­
tion of the t statistic when the Ho is true is also 
called the central t distribution. The probabilities 
for the t distribution for different degrees of 
仕eedom are tabled in most textbooks (usually for 
P=0.05 , 0.01 and sometimes 0.001). In addition, t 
distributions are programmed into statistical 

t = 0 t, 

software 飞Nhen using statistical tables , our value 
oftis simply compared to the critical t[ value atα= 
0.05. Larger t values always have a smaller P value 
(probability ofthis or a larger value occurring ifHo 
is true) so ifthe statistic is larger than the critical 
value at 0.05 , then Ho is rejected. Statistical soft­
ware usually gives actual P values for statistical 
tests , making the use of tables unnecessary 
W恒 could theoretically use the sampling distri­

bution of the sample mean (which would be a 
normal distribution) to test our Ho' However, there 
are an infinite number of possible combinations 
of mean and variance, so in practice such sam. 
pling distributions are not ca1culated. Instead , we 
convert the sample mean to a t value (subtracting 
μspecified in Ho and dividing by the standard 
error of the mean). whose central distribution is 
well defined 

Finally, it is important to note the relationship 
between the hypothesis test il\usttated here and 
confidence intervals desc 口bed in Chapter 2. The 
Ho that μequals zero is tested using a t distribu 
tion; a confidence interval forμis also con. 
structed using the same t distribution (based on n 
-1 df). Not surprisingly then , a test of this Ho 
with a 0.05 significance level is the equivalent of 
seeing whether the 95% (0.95) confidence interval 
forμoverlaps zero; ifit does , we have no evidence 
to r句ectHo.
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3_1 .4 One- and two-tailed tests 
In most cases in biology, the Ho is one of no ef:五ect
(e ,g. no difference between two means) and t~e H A 

ithe alternative hypothesis) can be in either direc 
Ìion; the Ho is rejected if one mean is bigger than 
the other mean or vice versa. This is termed a two 
tailed t巳st because large values of the test statistic 
at either end of the sampling distribution will 
result in rejection ofH。但gure 3.1). The Ho that a 
parameter equals a specific value is sometimes 
called a simple hypothesis or a point hypothesis 
(Bamett 1999). To do a test withα= 0.05 , then we 
use critical values of the test statistic at α=0.025 
at each end of the sampling distribution 
Sometimes , our Ho is more specific than just no 
difference. We might only be interested in 
whether one mean is bigger than the other mean 
but not the other way. For example , we might 
expect increased density of organisms to induce 
competition and reduce their growth rate , and we 
can think of no mechanism whereby the organ­
isms at the higher density would increase their 
growth. Here our Ho is that the population mean 
growth rate for increased density is greater than 
or equal to the population mean growth rate for 
lower density. Our H

A 
is, there币。因， that the popu 

lation mean growth 四te for increased density is 
less than the population mean growth rate for 
lowerdensi俘币1Îs is a one-tailed test, the Ho being 
directional or composite (Barnett 1999), because 
only large values ofthe test statistic at Qne end of 
the sampling distribution will result in r句ectIon

of the Ho (Figure 3.1). To do a test withα=0.05 ， 

then we use critical values of the test statistic at 
α= 0.05 at one end ofthe sampling distribution 

We should test one-tailed hypotheses with care 
because we are obliged to ignore large dif岳rences

in the other direction, no matter how tempting it 
may be to deal with them. For example , if we 
expect increased phosphorous (P) to increase 
plant growth compared to controls (C) with no 
added phosphorous, we might perform a one­
tailed t test (Ho:μp :5 fLc; HA μp>μd. However, we 
cannot draw any formal conc1usions if growth 
rate is much less when phosphorous is added , 

only that it is a non-signi直cant result and we have 
no evidence to reject the Ho. Is this unrealistic , 

expecting a biologist to ignore what ffiight be an 
important effect just because it was in the oppo-

~ 

site direction to that expected? This might seem 
like an argument against one-tailed tests , avoid­
ing the problem by never ruling out interest in 
effects in both directions and always using two­
tailed tests. Royall (1997) suggested that research 
ers who choose one-tailed tests should be trusted 
to use them correctly, although he used the prob­
lems associated with the one-tail versus two-tail 
choice as one of his arguments against statistical 
hypothesis testing and Pvalues more generally. An 
example of one-tailed tests comes 仕om Todd & 

Keough (1994), who were interested in whether 
microbial films that develop on marine hard sub­
strata act as cues inducing invertebrate larvae to 

settle. Because they expected these 且Ims to be a 
positive cue. they were willing to focus on changes 
皿 settlement in Qne direction only. Th巳'Y then 
ignoreddif岳阳nces in the opposite direction from 
their a p门ori one-tailed hypothesis 

Most statistical tables either pro吐de critical 
values for both one- and two-tailed tests but some 
just have either one- or two-tailed critical values 
depending on the statistic, so make sure you look 
up the correct P value if you must use tables 
Statistical software usually produces two-tailed P 
values so you should compare the P value to 
α= 0.10 for a one-tailed test at 0.05. 

3.1.5 Hypotheses for two populations 
These are tests ofnull hypotheses about the equiv­
alent parameter in two populations. These tests 
can be one- or two-tailed although testing a point 
null hypothesis with a two咀iled test is more 
common in practice , i.e. the parameter is the same 
in the two populations. Ifwe ha协e a random sample 
from each oftwo independent populations , i.e. the 
populations represent difl面坦rent collections of 
observations (i.e. sampling or experimental units) , 

then to 胆st the Ho thatμ 的 (comparing two 
independent population means): 

t= y, -y, 
7t-Y2 

(3.3) 

where 

( n， 一 1)5，' + (n 2 -1)50' 11.1\ 
l 一+一 I (3.4) 

叫 +η2 - 2 叫阿l

Equation 3.4 is the standard error of the di扫fer­
ence between the two means. This is just like the 

5_ 
Yl - Y2 
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one-parameter t test except the single sample sta­
tistic is replaced by the difference between two 
sample statist町， the population parameter spec­
ifìed in the Ho is replaced by the difference 
between the parameters of the two populations 
specified in the Ho and the standard error of the 
statistic is replaced by the standard error of the 
difference between two statistics: 

t (5', - 5',) - (μ1μ2) 
一

与 j-j'z
(3 .5) 

We follow the steps in Section 3 ,1.1 and compare t 
to the t dist口butionwith叫+ n2 - 2 df in the usual 
mannerτhis Hocan also be tested with anANOVA 
F.ratio test (Chapter 8) 

Wewill illustrate tests ofhypotheses about two 
populations with two examples. Ward & Quinn 
(1988) studied aspects ofthe ecology ofthe inter 
tidal predatory gastropod Lepsiella vinosa on a 
rocky shore in southeastern Australia (Box 3.1). L 

vinosa occurred in two distinct zones on this 
shore: a high-shore zone dominated by small 
grazing gastropods Littoriηa spp. and a mid-shor巳
zone dominated by beds of the mussels 
XenostroÞus pulex and Bγαchidontes rostr，αtus. Both 
gastropods and mussels are ea ten by L vinosa 
Other data indicated that fates of energy CQn­
sumption by L. vinosa 、、lefe much greater in the 
mu臼el zone. Ward & Quinn (1988) were interested 
in whether there were any dif岳阳nces in fecun­
dity ofL vinosa, especially the number of eggs per 
capsule , between the zones. From June to 
September 1982, they col!ected any egg capsules 
they could find in each zone and recorded the 
number of eggs per capsule. There were 37 cap­
sules recorded 仕om the littorinid zone and 42 
from the mussel zone τ'he Ho was that there is no 
difference between the zones in the mean 
number of eggs per capsule τ'his is an indepen­
dent comparison because the egg capsules were 
independen t between the zones 

Furness & Bryant (1996) studied energy 
budgets of breeding northern 且Jlmars (Fulmarus 
glacial叫 in Shetland (Box 3 , 2). As part of their 
study, they recorded various characteristics of 
individual悖 labeled male and female fulmars. We 
wi l1 focus on differences between sexes in meta­
bolic rate. There were eight males and six females 
labeled.τhe Ho was that there is no difference 

between the 5四:es in the mean metabolic rate of 
fulmars. This is an independent comparison 
because ir由vidual fulmars can only be either 
male or female 

Ifwe have a random sample 仕om a population 
and we have recorded two (paired) variables 仕om
each observation, then we have what are com­
monly called paired samples , e.g. observations at 
two times. To test whether the population mean 
difference between the two sets of observations 
equals zero , we basical1y use a test for a single pop 
ulation (Section 3.1,3) to test the Ho that μd=O 

d 
t=­

SJ 
(3.6) 

where d is the mean of the pairwise differences 
and s.i is the standard error ofthe pairwise differ­
ences. We compare twith a t distribution with n 
1 dfin the usual manner. This Ho can also be tested 
with a two factor unreplicated ANOVA F-ratio test 
(Chapter 10) 

For example , Elgar et aJ. (1996) studied the 
effect of lighting on the web structure of an orb 
spinning spider (Box 3.3). They set up wooden 
frames with two dif:也rent light regimes (con 
trolled by black or white mosquito netting), light 
and dim. A total of 17 orb spiders were allowed to 
spin their webs in both a light 仕ame and a dim 
frame , with six days' "rest" between trials for each 
spider, and the vertical and horizontal dianleter 
of each web was measured. Whether each spider 
was allocated to a light or dim frame fìrstwas ran­
domized. The null hypotheses were that the two 
va口ables (vertical diameter and horizontal diam­
eter of the orb web) were the same in dim and 
light conditions. Elgar et aJ. (1996) correctly 
treated this as a paired comparison because the 
same spider spun her web in a light 仕ame and a 
dark 仕ame

We can also test whether the variances of two 
populations are the same. Recall from Chapter 2 
that variances are distributed as chi-squares and 
the ratio oftwo chi-square distributions is anF dis­
tribution, another probability distribution that is 
wel! defìned. To test the H. that σ'=σ2 (comoar-~，、 r

ing two population variances), we ca1culate an F­
rat lO statist1c: 

俨 2

F= :1工
S2" 

(3.7) 

一一3.Il

lii Ward&Q叫
引:，pod Lepsie 口

旦旦Ie:i; from th~ 
Tí by L. vinoso were much greate广 in the mussel zone 50 the陀 wa5 inte陀st in differ­
fences m fec川ity between the zone5. The Ho was that there is no d町erence
!. between the zones in the mean number of eggs per capsule. This is an indepen-

dent comparison because individual egg capsules can 0门甘 be in either of the two 
zones 

Standard SE oí 95% CI for 
Zone n Mean Medlan R.ank 四m deviatio 吁 mean mean 

líttorinid 37 8.70 9 
Mussel 42 11 .36 11 

1007 
2153 

2.03 
2.JJ 

0.33 8.03-9.38 
0.36 10.64-12.08 

Note that standard deviatic吧。nd therefore the varianιes) 盯"e similar and box 
plots (Figure 4.4) do not 5uggest any asymmetry 50 a parametric t test is aρpropn 
ate 

Pooled variance test 

t= -539, df=77.P<O ,OOI 

We would reject the 叫 and conclude there was a 式atist时 Iy signifì日nt d肝町-ence

in mean number of eggs per capsule between zone三
E叮ect size (difference between mean5) 二 2.65 (95% CI: •1. 674 to - 3.635) 
SeDa 且e vanance test 

t= -5.44 ， df二77. P<O，OOI

Note that the t value5 were almo5t identical and the d电陀es of什eedom were the 
same, not surprising since the variances we陀 almost identlcal 

Although the陀 was Ii忧le justifìcation for a non-parametric test we al50 tested 
白e 叫 that the陀 was no di他它们 ce In a more gene时 measL陀 of location using 
the Mann-Whitney-Wilcoxc 气 test

u= 304.00, X2 approximat旧 η= 21.99 wlth 1 df, P<O,OOI 

Again we would 呵e址 the Ho' In this example, the parametric pooled and 叩ar­

ate variance t tests and 伫 on-parametric test all give P values <0.00 I 
A randomization test was done to test the Ho th且 there is no diffe陀nce

between 甘he mean num七 er of eggs p旷日p5ule 50 that any p。如ble allocatio门 of

ob5ervat旧时 to the two groups is equally like竹
问ean di忏erer 二 e=-265， P< 0.001 (signifìcant) for difference as or more 

e且陀me than observed based on I 0 000 randomizations 

where s/ is the larger sample variance and s/ is 
the smaller sample variance. We compare this F­
ratio with an F distribution with 叭 1 df for 
nUmerator (sample one) and n

2 
-1 df for denomi­

nator (sample nvo). We will consider F-ratio tests 
on variances in more detail in Chapters 50nwards 

3.1.6 Parametric tests and their 
assumptlons 

η1e t tests we have just described for testing null 
hypotheses about population means are c1assi直ed
as parametric tests , where we can speci电T a prob­
ability distribution for the populations of the 
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Box 3.21 Metabolic rate of male and female fulma 

Furness & Bryant (1996) studied energy budgets of b陀eding nc叶 em fulmars 
(Fulmσr皿 g{aôa{is) in Shetland. As part of their study, they recorded various char­
acterist口 ofind 们 dually labeled male and ferγale fulma凡 We will focus on differ­
en 二 es between sexes in metabolic 日te. There were eight males and six females 
labeled. The Ho was that the陪 is no d町e陀们 ce between the sexes in the mean 
metabolic rates of fulmars. This 匹 an independent comparison because individual 
fulmars can only be either male or 也male

5ex 
Standard SE of 95克 CI for 

n Mean Median deviation mean mean 

卜 ale

Female 
8 1563.78 1570.55 894.37 316.21 81 6.06-231 1.49 
6 1285.52 1226.15 420.96 17 1.86 84 3.74-1727.29 

Note that variances a陀 verγdifferent although the boxplots (Figure 4.5) do not 
suggest strong as泸节me甘γThe 5mall and unequal sample size旦 in conjunction with 
the unequal 、 ariances， indicate that a t test based on separate variances 巴 more

appropriate 
Separate variance test 

t~白 77， df~ 10.5， P~0.457 

We 呐。 uld not reject the Ho ar叫 conclude the陀 was 口 J statistically signi • cant dif­

ference in mean metabolic rate of fulmars between sexes 
The effect size (di忏町-ence between means) = 278.26 (95% CI: - 518.804 to 

1075.321 ) 
Note that the con扫dence interval on the mean di俑陀们 :e includes zerO,as expected 
given the non-significant result from the test 

Theve叩 different variances wouJd make us reluctant to use a rank-based non­
parametric test. Even a randomization test 阿light be susceptible to unequal vari­
ance , although the results 什omωch a test suppc时 the pre呐。us conclusior 

问ean di他广'ence ~ 278.2ιp ~ 0.252 (not signiflCant) for di忏erence as or more 
extreme than obse俨 ed based on 1 0 000 random日atior♀

variable 丘om which our samples came. All statis- introduce ways of checking these assumptions , 

tical tests have some assumptions (yes , even so- although these methods are presented in more 
called "non-paramet口c tests" - see Section 3.3.3) detail in Chapter 4 哑le assumptions themselves 
and if these assumptions afe not met, then the are also considered in more detail as assumptions 
test may not be reliable. Basically, violation of for linear models in Chapters 50nwards 
these assumptions means that the test statistic The 且rst assumption is that the samples are 
(e.g. t) may no longer be distributed as a t distribu 仕om normally distributed populations.ηlere IS 
tion, which then means that our Pvalues may not reasonable evidence from simulation studies 
be reliable. Although parametric tests have these (Glass et a1. 1972 , Posten 1984) that significance 
assumptions in theo叨， in practice these tests may tests based on the t test are usually robust to viola­
be robust to moderate violations ofthese assump- tions of this assllmption llnless the distriblltions 
tions , i.e. the test and the Pvalues may still be reli- are very non-symmetrical , e.g. skewed or multi­
able even if the assumptions are not met. We modal. Checks for symmetry of distributions can 
will describe the assumptions of t tests here and inc1ude dotplots (ifn is large enough), boxplots and 
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咛

画雨王310rb spider webs and light intensi J 
二斗ι 

…叮1叶--icuk 
;ElFretol(i996)ex阳时 170巾圳ers each to dim and light conditions and 
h:.ecorded two as阳白 ofweb structure under each condition. The Hos are that the 
i韧。 var础 es (vertical diameter and horÎzontal diameter of the 0巾 web) were the 
: same in dim and light conditions. Because the same spider spun her web in both 
: light condit阳 ns ， then this was a pairedζomparison. Boxplots of paired differences 
for both 、 ariab!es suggested symme廿ical distributions with nO outliers, so a pa目­
metric paired t test is appropriate 

Hor眨ontal diameter (cm) 

Mean diffE汀'e们自二 46.18.SEdi忏町'ence 二 21 .49

t~2.15， df~ 16.P~O.047 (到gnificant)

50 we would r同e吐 the Ho and conclude that. for the population of female 0巾
spide阳， there is a di叮erence in the mean horÎzontal diameter of spider webs 
betvveen light and dim conditions. 

Wilcoxon signed 目nkz~-1.84， P~O 日 66 (not signifìcant) , do not reject Ho' Note 
the less powetful non-parametric test produced a di而甘'ent resuJ t. 

Ve内cal d旧meter (cm): 

Mean di他rence ~ 20.59, SE dl他ren吐~ 21 .32 
t~0.97， df~ 16 ， P~0.349 (notsign的cant) ， do not reject Ho 

50 we would not reject the Ho a门d conclude 廿 at， for the population of female orb 
spider丸 there is no difference in the mean 'v已同 cal diameter of spider \'Jebs betwee 门

light and dim conditions. 

Wilcoxon signed rank z = -0.78 , P = 0.434 (not significant). In this case, the non­
parame甘 ic test produced 廿 e same co们 clu到on as the t test. 

U 

pplots (see Chapter 4). Transformations ofthe vari­
able to a different scale of measurement (Chapter 
4) can often improve its normality. We do not rec­
ommend formal significance tests for normality 
(e.g. Shapiro-Wilk test, Lilliefors test: see Sprent 
1993) because , depending on the sample size , these 
tests may reject the Ho of normality in situations 
when the subseqllent t test may be reliable. 

The second assumption is that samples are 
仕om poplllations with equal variances. This is a 
more critical assumption although , again, the 
llsual t test is very robust to moderately unequal 
variances if sample sizes are equal (Glass et αl 
1972, Posten 1984). While much ofthe simulation 
work relates to analysis ofvariance (ANOVA) prob­
lems (see Day & Quinn 1989 , Wilcox et a1. 1986 , 

Chapter 8) , the results also hold for t tests , which 
are equivalent to an ANOVA F-ratio test on tvγo 
groups. For example , if n equals six and the ratio 

of the two standard deviations is four or less , sim. 
ulations show that the observed Type 1 error rate 
for the t test is close to the specified rate (Coombs 
et al. 1996). If sample sizes are very unequal. espe 
cially if the smaller sample has the larger vari 
ance , then Type 1 error rates may be much higher 
than postulated significance level. If the larger 
sample has the larger va口ance， then the rate of 
Type II errors will be high (Judd etal. 1995 , Coombs 
et al. 1996). Coombs et al. (1996) illustrated this 
with simulation data 仕omWilcox et a1. (1986) that 
showed that for sample sizes of11 and 21 , a four to 
one ratio of standard deviations (largest standard 
deviation associated with small sample size) 
resulted in a Type 1 error rate of nearly 0.16 for a 
nominalαofO.05. Note that unequal variances are 
often due to skewed distributions , so fìxing the 
non-normality problem will often make variances 
more similar. Checks for this assumption include 
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STATISTICAL CONCLUSION 

Reject Ho Retain Ho 

examining boxplots of each 
5ample for 5imilar 5pread5. We POPULATION 
do not routinely recommend a SITUATION 
prelimina可 te5t of equal pop-

Effect 
Correct decision 
Effect detected 

Type 11 error 
Effect not detecled 

ulation variances using an F-
ratio te5t (Section 3. 1.5) 岛r No effect 

Type I error 
Effect detected; 

none exists 

Correct decÎsÎon 
No effect detected; 

none exists 
three reasons 

• The F-ratio test ffiight be more sensitive to non 
normality than the t te5t it i5 "protecting" 

• Depending on 5ample 5ize , an F.ratio te5t may 
not detect variance d而ference5 that could 
invalidate the fol1owing t te5t, or it might find 
unequal variances (and hence recommend the 
following analY5i5 not be done), which would 
not adversely affect the subsequent t test 
(MarkoW5ki & Markow5ki 1990). Thi5 
dependence ofthe results ofa statistical 
hypothesis test on sample size is well known 
and will be di5cu55ed further in Section 3.6 

• Stati5tical hypothe5i5 te5ting 5hould be u5ed 
care丑llly， preferably in situations where power 
and effect sizes have been considered; this is 
rarely the case for exploratory checks of 
assumptlûlls 

The third assumption is that the observations are 
5ampled randomly 仕om clearly defined popula. 
tions. This is an assumption that must be consid­
ered at the de5ign 5tage. If 5ample5 cannot be 
5ampled randomly仕ompopulat旧时， thenamore 
general hypothe5i5 about di旺erences between 
samples can be tested with a randomization test 
(5ee Section 3.3.2) 

These t tests are much more sensitive to 
assumptions about normality and equal variances 
if sample sizes are unequal, so for this reason 
alone, it's always a good idea to design studies 
with equal sample sizes. On an historical note , 

te5ting di旺erences between means when the vari­
ances also differ has been a research area of long­
standing interest in statistics and is usually called 
the Behren5-Fi5her problem. Solution5 to thi5 
problem will be discussed in Section 3.3.1. 

An additional issue wi由 many statistical tests , 

including parametric tests. is the presence of 

outlier5 (Chapter 4). Outlier5 are extreme value5 
in a sample very different from the rest of the 
observations and can have strong effects on the 
resu1ts of most statistical tests , in terms of both 
Type I and 巧rpe 11 error5. Note that both param卧
ric t tests and non-parametric tests based on ranks 
(Section 3.3) a四 affected by outlier5 (Zimmerman 
1994) , although 四nlεbased tests are less sensitive 
(Zimmerman & Zumbo 1993). Detection and treat. 
ment of outliers is considered in Chapter 4 

3.2 I Decision errors 

3.2.1 Type 1 and 11 errors 
VVhen we use the Neyman-Pearson protocol to 
test an Ho' there are four possible outcomes based 
on whether the Ho wa5 actually true (no effect) or 
not (real effect) for the population (Figure 3.2). A 
rejection of a Ho is usually termed a signi且cant
result (statistically significant, not necessarily bio­
logically 5ignificant - 5ee Box 3.4) and implie5 that 
50me alternative hypothe5i5 (H

A
) i5 true. Clearly, 

two ofthe outcomes result in the right statistical 
decision being made; we correctly reject a false Ho 
or we correctly retain a true Ho. VVhat about the 
two errors? 

• A Type 1 error is when we mistakenly reject a 
correct Ho (e.g. when we conc1ude from our 
5ample and a t te5t that the population 
parameter is not equal to zero when in fact the 
population parameter does equal zero) and is 
denoted α. A Type 1 error can only occur when 
Ho is true. 

• A Type II error is when we mistakenly accept 
an incorrect Ho (e.g. when we conclude from 

叫

DECISION ERRORS 

Region where Ho retained Region where Ho rejected Graphical 

H O 

。fType 1 and乃pe 11 

error probabilities. using a t test as 
an example 

Type 11 error Type 1 error 

value equal to or smaller than 
this c 口tical value will lead to 
non-f<句ection of Ho and a 
ηpe 11 error. Note that ifHo i5 , 

且br example, no difference 
between means, then H

A 
is a 

our 5ample and a t te5t that the population 
parameter equals zero when in fact the 
population parameter is different from zero) 
巧pe II eITor rates are denoted by βand can 
only occur when the Ho is false 

Both errors are the result of chance. Our 
random 5ample(5) may provide mi51eading in岛p
mation about the population(5) , e5pecially if the 
sample sizes are small. For example, two popula­
tions may have the same mean value but our 
5ample 仕um one population may, by chance , 

contain alllarge values and our sample from the 
other population may, by chance, contain a11 
small values, resulting in a statistically si伊丽cant

difference between means. Such a Type 1 error is 
p055ible even if Ho (J-L, ~的 is true，旺's just 
unlikely. Keep in mind the frequency inte甲reta

tion of P values also applies to the interpretation 
of error rates 白1e Type I and τ'ype 11 error prob­
abilities do not necessarily apply to our spec姐c

statistical test but represent the long-run prob­
ability oferror5 ifwe repeatedly 5ampled from the 
5ame population(5) and did the te5t many time5. 

Examine Figure 3.3, which 5hoW5 the probabil 
ity sampling distribution of t when the Ho is true 
(Ieft curve) and the probability 5ampling di5tribu 
tion of t when a particular H

A 
is true (right cu凹e)

Of course , we never know what this latter distribu­
tion looks like in practice because ifHo is false , we 
don't knowwhat the real H

A 
is. For a particular df, 

there will be a di岱rent distribution for each pos-
5ible H, but only one 5ampling di5tribution for Ho. 
TIle critical value oftfor α~ 0.05 i5 indicated.lfHo 
is actually true , any t value greater than this criti­
cal value willlead to a rejection ofHo and a Type 
1 error. If Ho is actually false and HA is true , any 

difference between means. 
The bigger the difference, the further the t di5tri. 
bution for HA will be to the right of the t di5tribu 
tion for Ho and the le55 likely will be a Type 11 
error. 

Traditionally, scientists have been most con 
cerned with 巧pe [ error5. Thi5 i5 probably 
because statistically significant results imply 臼l

51直cation of a null hypothesis and therefore 
progress in science and maybe because we 
wrongly equate statistical sign诅cance with bio 
logical 5ignificance (5ee Box 3.4). Therefo肥， we 
protect ourselves (and our discipline) 仕om fal5e 
signi且.cant results by using a conservative signifi­
cance level (e.g. 0.0日; this means that we are con 
trolling our Type I error rate to 0.05 or 5%. If the 
probability of obtaining our 5ample when the Ho 
is true is less than 0.05 , then we reject that Ho; 
otherwise we don't reject it. 'Why don't we use an 
even lower significance level to protect ourselves 
from Type 1 errors even more? Mainly because for 
most statistical tests , for a given sample size and 
level of variation , lowering the Type 1 error rate 
(the 5ignificance level) 四5ul臼 in more Type n 
errors (imagine moving the vertical line to the 
right in Figure 3.3) if it turn5 out that the H

A 
i5 

true 
For some activities , especially environmental 

monitoring and impact assessment and experi­
ments involving human health issues , Type II 
errors may be of much greater importance than 
Type 1. Consider a monitoring program, and the 
consequences of the two kinds of errors. A Type 1 
error results in an erroneous claim of a sign姐cant

environmental change. ln an ideal world , the 
result would be a requirement by the relevant reg­
ulatory authority for some mitigation or cessa­
tion of the activi可 causing that change. The 
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Such a test is more reliable than the traditional t 
test when variances are very unequal and/or 
sample sizes are unequal 

Coombs et al. (1996) reviewed all the available 
tests for comparing two population means when 
variances may be unequalτhey indicated that the 
Welch test is suitable 飞rVhen the samples C01口e

from normally distributed populations but rec­
ommended the Wilcox H test , based on M­
estimators and bootstrapped estimates of 
variance (Chapter 2) , for skewed distributions 
Unfortunately, this test is not available in most 
software 

Some common types of null hypotheses can 
a150 be tested with non-parametric tests. Non. 
parametric tests do not assume that the underly­
ing distribution of the population(s) 仕'Offi which 
the samples came is normal. Before looking at 
"c1assical" non-parametric tests based on ranks , 

let's consider another type of statistical test called 
a randomization test 

3.3 .2 Randomization (permutation) tests 
These tests resample or reshuffle the original data 
many times to generate the sampling distribution 
of a test statistic directly. Fisher (1935) first pr研
posed that this method might be suitable for 
testing hypotheses but, without computers , could 
only analyze very small data sets. To illustrate ran 
domization tests , we will revisit the example 
described in Section 3.1.5 where Ward & Quinn 
(1988) wished to test the Ho that there is no dif岳r­

ence between the mussel and littorinid zones in 
the mean llllmber of eggs per capsule of L.vinosa 
τhe steps in the randomization test are as follows 
(Manly 1997) 

1. Ca1culate the difl岳阳nce between the mean 
numbers of eggs per capsule of the two groups 
(Do) 

2. Randomly reassign the 79 observations so 
that 37 are in the littorinid zone group and 42 
are in the mussel ZQne group and calculate the 
difference between the means ofthe two groups 

(D,) 
3. Repeat this step a large number oftimes. 

each time calculating the Dj" How many 
randomizations? Manly (1997) suggested 1000 
times for a 0.05 test and 5000 times for a 

have incorporated this idea into a 仕amework for 
designing environmental monitoring programs, 

and included a worked example. Downes et a1 
(2001) have also advocated scalable decision crite­
ria for assessìng environmental ìmpact in 仕esh­

water ecosystemsτhe logìc of considering costs of 
making errors ìn statistical decisìon making is 
much closer to the Bayesian approach to making 
decisìo旧， although Bayesians eschew the long­
run 仕equency view of probability (Section 3.7) 

3.3.1 Robust parametric tests 
A number oftests have been developed for the Ho 
that 州 =μ2 which do not assume equal varìances. 
For example, there a四 approximate versìons of 
the t test (called variously the Welch test, 
We1ch白Aspin test, the Satterthwaite-adjusted t 
test , Behrens-Fisher test, separate variances t test) , 

which are available in most statistical so仕war，毡，
τhe most common version ofthis test reca1culates 
the df for the t test as (Hays 1994) 

(5， 1吭十 5，1Yn，)'
(5 ， 1 \/η，)'/(叫 +1)+(5， 1飞/η2泸州内+ 1) 

The statistical tes臼 most commonly used by bioJ. 

ogists, and the tests based on the t distribution we 
have just described , are known as parametric 
testsτhese tests make distributional assumptions 
about the data , which for t tests are that the dis­
tributions of the populations from which the 
samples came are normal. Most textbooks state 
that parametric tests are robust to this assump­
tion, l.e 出e sampling distribution of the t statis­
tic still follows the appropriate ma出ematical

distribution even if the variable has a non-normal 
distribution. This means 出at the conc1usions 
仕om the test of Ho are still reliable even if the 
underlying distribution is not perfectly normal 
τhis robustness is limited , however, and the 
assumption of normality (along with other 
assumptions inherent in all statistical tests - see 
Section 3.1.6) should always be checked before 
doing a parametric analysis 

(3.8) 

This results in lower df (which may not be an 
integer) and therefore a more conservative test 

z 
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Box 3.4 1 Biological versus stati~tical signifì 

!t is important to distinguish between bio!ogical and statistical signifìcance. As men­
tioned in Section 3.6.1 , if we take larger and larger samples, we can detect even very 
small di他rences. Whenever we get a (白tistical竹) sign而cant result, we must still 
decide whether the e他cts that we observe a陀 biologically meaningfu l. For 
example, we might measure 100 snails in each of two populations, and we would 
almost ce时ainly fln 才 that出 e two populations were diffe陀nt in size. Howeve r; if the 
mean size di何ered by :::::: 1%，叭 e may struggle to explain the biological meaning of 
such a small dl而言rence

What is biologically signifìcant? The answer has nothing to do with statistics, but 
with our biological judgment, and the answer will vary with the questions being 
answered. Small e他cts of experimental treatments may be biological甘到伊fìcar飞t

whenwea陀 dealing with rates of gene flow，咒lection ， or some physiological meas 
urements, because small differencesζan have important repercussions in popula 
M同 E四etics or organism health. For example , small changes in the co门 centrat旧n

ofato削 in body tissues m町 be enough to cause n 川al邮 Inζontrast，~江旧 11 effects 
may be less i叩 :wtant for ecol鸣叫 pr，旺esses at larger spatial scal因 especially

under fìeld co们 ditions

It is important for biologists to think carefully about how large an effect has to 
be before 此巴 biologì日lIy meaningfu l. In particular. setting biologically important 
effect sizes is crucial for ensuring that out statistical test has adequate powe仁

3.2.2 Asymmetry and scalable decision 
cntena 

One of the problems of 且xing our significance 
level α， even ifwe then use power analysis to deter­
mine sample sizes to minimize the probability of 
Type Il erro凹， is that there is an implicit asymme­
try in the importance ofHo relative to HA (Barnett 
1999 , Oakes 1986). In many practical situations , 

且xmgαto 0.05 will make it difficult to reduce the 
probability ofType 1I errors to a comparable level, 
unless sample sìzes or effect sizes are very large 
The only solution to this problem , while still 
maintaining the structure of statistical tests and 
errors associated with decisions , is to abandon 
fi.xed level testing and use decision criteria that 
provide a more sensible balance between Type 1 
a口d Type 1I errors 

Map5tone (1995) ha5 proposed one w叮 of

incorporating flexible decision criteria in statìstì­
cal hypothesis testing ìn ecology and environmen­
tal science. He suggested that we should set the 
ratio of acceptable Type 1 and Type 11 errors a 
pno时， based on the relative costs of making each 
kind of error, and the critical ef:岳ct size is the 
most crucial element. Keol1gh & Mapston巳 (1995)

"costs" would be purely tìnancial - the cost of 
(unnecessary) mitigation. A Type II error, on the 
other hand , is a failure to detect a change that has 
occurred. The verdict of "no significant ÎI卫pact"
results in continuation of harmful activities 
There is no added 丑nancial cost, bl1 t some time in 
the future the environmental change will become 
large enough to become apparent. The conse­
quence of this error is that signì日cant environ­
mental degradation may have occl1rred or become 
mQre widespread than if it had been detected 
ear1y, and mitigation or rehabi1i tation may be nec­
essary, perhaps at signi直cant cost. A strong argu­
ment can therefore be made that for many 
"applied" purposes，飞rpe 11 errors are mQre impor­
tant than Type 1 errors. A sim i1ar arguIηent 
applies to other research areas. Underwood (1990 , 

1997), in describing the logical structure of 
hypothesis testing, indicates very c1early how 
ηpe II errors can misdirect research programs 
completely. 

The inverse ofType II error is power, the prob­
abili可 of rejecting a false Ho' We will consider 
power in more detail as part of experimental 
design in Chapter 7. 
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eter, ana悖zing the paired di他rences ， and the 
procedure is as follows 

1. Calculate the difference between the obser­
vations for each pair, noting the sign of each dif­
ference. IfHo is true , we 怦ould expect roughly 
equal nUlllbers of 一← and - signs. 

2. Calculate the sum ofthe positive ranks and 
the sum ofthe negative ranks 

3. Compare the smaller of these rank sums to 
the probability distribution of rank sums , based 
on randomization , and test in the usual manner 

4. For larger sample sizes , the probability dis 
tribution of rank sums follows a normal distribu 
tion and the z statistic can be used, although the 
concern of Bergmann et al. (2000) about difl岳r­

ences between the large sample approximation 
and exact methods for the 
Mann-Whitney-Wilcoxon test may also apply 归
the 斗气li1coxon signed-rank test 

Another non-parametric approach using 
ranks is the c1ass of rank transformation tests 
This is a more general approach that theoreti­
ca11y can be applied to any analysis for which 
there is a parametric test. The data are trans­
formed to ranks and then th凹e ranks are ana­
lyzed using the appropriate parametric analysis 
Note that this technique is conceptua11y no differ­
ent to transforming data to logs to meet the 
assumptions of a parametric test (Chapter 4) and 
is therefore not a true non-parametric test (Potvin 
& Roff 1993). 四e rank transform approach will 
generally give the same answer as the appropri­
ate rank-based test, e.g. rank transform t test is the 
same as the Mann-Whitney-Wilcoxon test 
(Zimmerman & Zumbo 1993) , although if there 
are a large number of ties the results will vary a 
little. Tests based on the rank transform method 
have also been used for various linear model ana­
lyses (Chapters 5, 8 and 9) 

Although these non-parametric tests of loca­
tion differences do not assume a particular shape 
(e.g. normal) ofthe underlying distributions , they 
do assume that the distributions of the popula 
tions are similar, so the assumption of equal 
variances still applies (Crowley 1992, Manly 1997, 

Sprent 1993, Stewart-Oaten et aL 1992, 

Zimmerman & Zumbo 1993)τ'he common 
strategy in biological research to use rank-based 

many statistics books. In contrast, determining 
the probability distribution for a test statistic (e.g. 
difference between means) based on randomizing 
the original observations was not possible before 
cornputers except for small sample sizes. Second. 
using the ranks of the obse凹'ations removes the 
assumption of normality of the underlying distri­
bution(s) in each group , although other assump­
tions may still apply. 

Although there is a wide range of rank-based 
non-parametric tests (Ho11ander & Wolfe 1999, 

Siegel & Caste11an 1988, Sprent 1993), we"吐11 only 
consider two here. First. consider a test about dif­
ferences between two popula tions.τlle Mann 
Whitney-Wilcoxon test is actually two indepen 
dently developed tests (Mann-Whitney and 
Wilcoxon) that produce identical results. 四e Ho 
being tested is that the two samples come 仕om
populations with identical distributions against 
the H

A 
that the samples come 仕om populations 

which differ only in location (mean or median). 
The procedure is as follows 

1. Rank all the observatio田， ignoring the 
groups. Tied observations get the average of their 
ranks. 

2. Calculate the sum ofthe ranks for both 
samples. Ifthe Ho is true , we would expect a 
similar mixture ofranks in both samples (Sprent 
1993) 

3. Compare the smaller rank sum to the 
probability distribution ofrank sums , based on 
repeated randomization of observations to 
groups , and test in the usual manner 

4. For larger sample sizes , the probability 
distribution ofrank sums approximates a 
normal distribution and the z statistic can be 
used. Note that different software can produce 
quite diff坦rent results depending on whether the 
large-sample approximation or exact 
randomization methods are used, and also how 
ties are handled (Bergmann et aJ. 2000). 

Second , we may have a test about di丘社rences
based on paired observations. For paired samples , 

we can use the Wilcoxon signed-rank test to test 
the Ho that the two sets of observations come仕om
the same population against the HA that the pop­
ulations differ in location (mean or median). This 
test is actually a test ofa single population param-
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relevant or the whole population is effectively 
measured. Second , the Ho b凹ng tested then is not 
one about population parameters , but simply that 
there is no difference between the means of the 
two groups , i.e. is the difference between group 
means "grea ter then we would expect by chance". 
Fina11y, the Pvalue is interpreted differently 仕om
the usual "classical" tests. In randomization tests , 

the Pvalue is the proportion ofpossible data rear­
rangements (e.g. between two groups) that are 
equal to, or more extreme than, the one we 
observed in our sample(s). Interestingly, because 
the P value is determined by a (re)sampling 
process , confidence intervals for the Pvalue can be 
determined (Crowley 1992) 

Randomization tests for di自'èrences between 
group means are not 仕ee of assumptions. For 
example, randomization tests of the Ho of no d岳
fer飞~nce between means are likely to be sensitive to 
differences in variances (Boik 1987, Stewart-Oaten 
et aJ. 1992). Indeed. randomization tests of loca 
tion (e.g. mean) differences should be considered 
to have an assumption of s皿lilar distributions in 
the different samples , and transformations used 
where approp口ate (Crowley 1992). So these tests 
should not be automatica11y applied to overcome 
problems ofvariance heterogenei俘

Manly (1997) is an excel1ent introduction to 
randomization tests 仕om a biological perspective 
and Crowley (1992) critica11y summarized many 
applications of randomization tests in biology. 
Other good references for randomization tests are 
Edgington (1995) and Noreen (1989) 

3.3.3 Rank-based non-parametric tests 
Statisticians have appreciated the logic behind 
randomization tests for quite a long time, but the 
computations involved were prohibitive without 
computers. One ear1y solution to this problem was 
to rank the observations first and then randomize 
the ranks to develop probability distributions of a 
rank-based test statistic. Ranking the observations 
has two advantages in this situation. First, deter­
mining the probability distribution of a rank­
based test statistic (e.g. sum of the ranks in each 
sample) by randomization is relatively easy, 

because for a given sample size with no ti凹. the 
distribution is identical for any set of data. The 
critical values for such distributions are tabled in 

0.01 test. With modern computer power, these 
nUfllbers ofrandomizations only take a few 
seconds 

4. Calculate the proportion of a11 the D,s that 
are greater 出an or equal to D 0 (the dif:岳阳nce
between the means in our samples). This is the 
"P value" and it can be compared to an a p门on
slgnl直cance level (e.g. 0.05) to decide whether to 
reject the Ho or not (Neyman-Pearson tradition) , 

or llsed as a measure of "strength of evidence" 
against the Ho (Fisher tradition - see Manly 
1997) 

The underlying principle behind randomiza­
tion tests is that ifthe null hypothesis is true , then 
any random arrangement of observations to 
groups is equa11y possible (Crowley 1992) 
Randomization tests can be applied to situations 
where we are comparing groups or testing 
whether a set of observations occurs in a random 
order (e.g. time series). They are particularIy 
useful when analyzing data for which the distri­
bution is unknown (Potvin & Roff 1993), when 
random sampling from populations is not pos­
sible (e.g. we are using data that occurred oppor­
tunistically, such as m useum specimens - see 
Manly 1997) or perhaps when other assumptions 
such as independence of observations are ques­
tionable, as when testing for temporal trends 
(Manly 1997). There are some potential interpreta­
tion problems with randomization tests that 
users should be aware of. First, they involve resam­
pling the data to generate a probability distribu. 
tion of the test statistic. This means that their 
results are more difficult to relate to any larger 
population but the positive side is that they are 
particularly use臼1 for analyzing experiments 
where random sampling is not possible but ran 
domization of observations to groups is used 
(Ludbrook & Dudley 1998). Crowley (1992 , p. 432) 
argued tha t the difficul可 ofmaking inferences to 
some population is a problem "of greater theoret­
ical than applied relevance" (see also Edgington 
1995), particularly as randomization tests give 
similar Pvalues to standard parametric tests when 
assumptions hold (Manly 1997). Manly (1997) also 
did not see this as a serious problem and pointed 
out that Ofie of the big advantages of randomiza­
tion tests is in situations when a population is not 
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use or co口tent) should be analyzed separately, 

even ifthey are not independent of each other, "γe 

recommend that each researcher. in a specific 
analytical situation, must make an a p时ori deci 
sion about what a family oftests is; this decision 
should be based , at least in part, on the relative 
importance of巧rpe 1 versus Type II errors 

The other issue is what level to set for family 
wise error rate. It is common practice for biolo 
gists to set the family-wise Type 1 effQr rate to the 
same level as they use for individual comparisons 
(e,g , 0 ,05), This is not easy to justi弯.， especially as it 
reduces the comparison飞Nise Type 1 error rate to 
very low levels, increasing the probability ofType 
11 errors if any of the Hos are false. So this is a very 
conservative strategy and we should consideI 
alternatives. One may be to use a procedure that 
controls the family-wise error rate but to set a sig­
nifìcance level above 0.05. There is nothing sacred 
about 0.05 (see Section 3.6) and we are talking 
here about the probability of any Type 1 error in a 
collection of tests. Setting this signifìcance level a 
prio时 to 0.10 or higher is not unreasonable 
Another approach is the interesting proposal by 
Benjamini 岛 Hochb咀g (1995). They also argued 
that control of family-wise Type 1 error rate may 
be too severe in some circurnstances and reCO lTI­

mended controlling the false discovery rate (FDR) 
τ'his is the expected proportion of Type 1 errors 
among the rejected hypotheses 

3.4.2 Adjusting signifìcance levels and/or P 
values 

V叽latever philosophy we decide to use. there will 
be situations when some control of family-wise 
Type 1 error rate will be requiredτhe procedures 
we will describe here are those which are indepen 
dent of the test statistic used and are based on 
adjusting the signifìcance levels for each test 
downwards to con trol the family-wise Type 1 error 
rate. Note that instead of adjusting significance 
levels，飞tve could also adjust the P values and use 
the usual significance levels; the two approaches 
are equivalent 

Bonferroni procedure 
τhis is a general procedure 伽呻l1sting signifi­
cance levels to control Type 1 error rates in multi­
ple testing sitl1ations. Each comparison is tested at 

Family-wise probability of at 
least one 乃pe 1 error 

。 14

0,40 
0,90 

depend on the degree 
among the tests. 

τhe different approaches for dealing with the 
increased probability of a Type 1 error in multiple 
testing situations are based on how the Type 1 
eITor rate for each test (the comparison-wise Type 
1 error rate) is reduced to keep the family-wise 
ηpe 1 error rate at some reasonable level. Each 
test will then have a more stringent signi且cance
level but as a consequence , much reduced power 
ifthe Ho is false , However, the traditional priority 
of recommendations for dealing with multiple 
testing has been strict control offamily-wise可pe

1 error rates rather than power considerations 
Before describing the approaches for reducing the 
Type 1 error rate for each test to control the family­
wise Type 1 error rate, we need to consider two 
other issues. The first is how we define the family 
of tests across which we wish to control the Type 
1 error rate and the second is to what level should 
we control this error rate. 

What comprises a family oftests (Shaffer 1995 , 

Hancock & Klockars 1996) for determining error 
rates is a diffìcult deci日on. An extreme view, and 
not one to which we subscribe. ffiight be to define 
a family as all the tests a researcher ffiight do in a 
lifetime (see Maxwell & Delaney 1990 and Miller 
1981 for discussion) , and try to limit the Type 1 
error rate over this family. Controlling error rates 
over sl1ch a family of tests has interesting and 
humorous implications for biologists' career 
structures (Morrison 1991). More generally, a 
family is defined as some collection of simultane­
ous tests , where a number ofhypotheses are tested 
simultaneously using a single data set from a 
single experiment or sampling program 

We agree with Hochberg & Tamhane (1987) 
that unrelated hypotheses (in terms of intended 

of non-independence 

fτ王F罚A阳白_ccum叫咀由山a目tlOn川d阳叫ba蛐叫叫a抽副削削bil削il山li川1
m e1ηγP严ele凹r口rro田ramonga"白ffil日nt口旧t吐旷l甘旷y" of 田剧tωs 

No , oftests 

3 
10 
45 

一

J
1
剖
r
h
t
v
i
i

在
v
r
u
-
-
b
h
k
j
H
h
h
L
:
i

out1坦白; they arejust not affected as much as par­
ametric tests (Zimmerman & Zumbo 1993) 

3.4 .1 The problem 
One ofthe most difficult issues related to statisti­
cal hypothesis testing is the potential accumula­
tion of decision errors under circumstances of 
multiple testing , As the number of tests 
increases , so does the probability of making at 
least one Type 1 error among the collection of 
tests , The probability of making one or more Type 
1 errors in a set (or family) of tests is called the 
family-wise Type 1 error rate , although Day & 

Quinn (1989) and others have termed it experi­
ment-wise 巧pe 1 error rate because it is often 
used in the context of multiple comparisons of 
means when analyzing experimental data. The 
problem of increasing family-wiseηpe 1 error 
rate potentially occurs in any situation where 
there are multiple significance tests that are con 
sidered simultaneously. These include pairwise 
comparisons of treatment groups in an experi 
ment (Chapter 剖 testing pairwise correlations 
between multiple variables recorded 仕om the 
same experimental or sampling units (Rice 1989) 
or multiple univariate analyses (e ,g. t tests) of 
these variables 

lf the tests are orthogonal (i.e, independent of 
each other) , the family-wise Type 1 error can be 
calculated: 

where αis the signi直cance level (e.g , 0.05) for each 
test and c is the number of tests. For example , 

imagine having a random sample from a number 
of populations and we wish to test the Hos that 
each independent pair of population means is 
equal. We keep these comparisons independent by 
not using the same popl1lation in more than one 
test. As the n l1mber of populations we wish to 
compare increases , 50 does the numb盯 of pair­
wise comparisons required and the probability of 
at least one Type 1 error among the family of tests 
σ'able 3.1). If the tests are non-orthogonal, then 
the fam iIy-wise Type 1 error rate will be lower 
(Ramsey 1993), but cannot be calculated as it wilI 

(3.9) 

3.4 I Multiple testing 

1-(1α)c 

non-parametric tests to overcome variance hetero­
geneity is inappropriate. Variance heterogeneity 
in the two-sample hypothesis test should be dealt 
with by using a robust test, such as the Welch ttest 
(Section 3.3.1) or by transforming the data to 
remove the relationship between the mean and 
variance (αlapter 4) 

These non-pararnetric tests generally have 
lower power 仕lan the ana]ogol1s parametric tests 
when parametric assumptions are met. although 
the difference in power is surprisingly small (e ,g 
<5% difference for Mann-Whitney-Wi1coxon test 
versus ttest) given the former's use ofranks rather 
than the original data (Hollander & Wolf坦 1999) ，

With non-normal distributions , the non-paramet­
ric tests do cope better but because normality by 
itselfis the least critical ofall parametric assump­
tions , its hard to recommend the rank-based tests 
except in situations where (i) the distributions are 
very weird. and transformations do not help, or 
(ii) outliers are present (see Chapter 4).lt is some­
times recommended that ifthe data are not meas­
ured on a continuous scale (i.e. the data are 
already in the form of ranks) , then tests like the 
Mann-Whitney-Wilcoxon are applicable , V山 dis­

agree because such a test is equivalent to applying 
a parametric test (e.g. t test) to the ranks , a much 
simpler and more consistent approach. It is also 
、<vorth noting that the rank-based randomization 
tests don't really have any advantage over random­
ization tests based on the original data , except in 
terms of computation (which is irrelevant with 
modern computer power) - see Ludbrook & 

Dudley (1998). Both have assumptions of equal dis­
tributions in the two groups. and there岛re equal 
variances , and neither is very sensitive to non-nor­
mality. 

Rank-based tests have been argued to be more 
powerful than parametric tests for very skewed 
(heavy tailed) distributions. However, this is pri 
marily because rank-based tests deal with outliers 
more effectively (Zimmerman & Zumbo 1993). 
Indeed , outliers cause m句or problems for para 
rnetric tests and their identification should be a 
priority for exploratory data analysis (Chapter 4) 
τ'he alternative to rank-based tests is to remove or 
modi穹 the outlying values by trimming or win 
sorizing (Chapter 2) and using a pa四metnc test 
Note that non-parametric tests are not immune to 
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enough information is provided to measure an 
effect size or its variance. There is a150 the issue of 
quality control , ensuring that the design of the 
studies we have used in a meta-analysis are accept­
able, and whether we can combine studies based 
on experimental manipulations versus those 
based on weaker su凹'ey designs , Nonetheless , 

meta-analysis is increasing in use in the biological 
literature and some appreciation of its strengths 
and weaknesses is important for biologists. One 
important weakness worth noting is the ..且le

drawer problem". The database of published 
papers is highly censored, with non-significant 
results under-represented , 50 a meta-analysis of 
published work should inc1ude careful thought 
about what "population" these published studies 
represent 

Two detailed texts are Hedges & Olkin (1985) 
and the volume edited by Cooper & Hedges (1994), 

although excellent reviews 仕om a biological per 
spective include Gurevitch & Hedges (1993) and 
Hasselblad (1994) 

Significance testing, especially null hypothesis 
significance testing, has been consistently criti­
口zed by many statisticians (e.g. Nester 1996, 

Salsburg 1985) and, in particular, in the recent 
psychological and educational literature (e ,g 
Ca凹er 1978, 1993 , Cohen 1990, 1994, Shaver 1993 , 

Harlow et a!. 1997 and chapters therei时. Biologists 
have also questioned the validity of statistical 
hypothesis testing (e.g. Johnson 1999, Jones & 
Matloff1986 , Matloff1991 , Stewart-Qaten 1996) ,A 
thorough review of this literature is beyond the 
scope of our book but a brief discussion of these 
criticisms is warranted 

3.6.1 Dependence on sample size and 
stopping rules 

丁'here is no question that results 自or c1assical sta t 
istical tests depend on sample size (Chow 1988 , 

Mentis 1988 ， τhompson 1993), i.e. every1hing else 
being the same. larger sample sizes are more 
likely to produce a statistically significant resu1t 
and with very large sample sizes , trivial effects 

Critique of statistical 

hypothesis testing 

3,6 

topic. e.g. competition behveen organisms 
IGurevitch et al. 1992), and some overall summary 
of the conc1usions 仕om dif函rent studies is 

required 
Basically. meta-analysis ca1culates , for each 

analysis being incorporated. a measure of effect 
size (Rosenthal 1994, see also αapters 7 and 8) 
that incorporates the variance ofthe effect. These 
effect sizes 仕om the c different tests are averaged 
using the sum of the inverse of the variance of 
each effect size ("inverse variance weighted 
average": Hasselblad 1994, p. 695)η11S average 
e能ct size can be used as a summary measure of 
the overall effect ofthe process being investigated 

Most meta-analyses are based on fixed effects 
models (see also Chapter 8) where we are assum­
ing that the set of analyses we are combining 
share so皿e true effect size for the process under 
investigation (Gurevitch & Hedges 1993). Under 
this model, the test ofHo that the true effect size 
is zero can be tested by constructing confidence 
intervals (based on the standard normal distribu 
tion) for the true average effect size (Gurevitch & 

Hedges 1993) and seeing ifthat confidence inter­
val includes zero at the chosen level (e.g. 95%). W注

can also ca1culate a measure of homogeneity (Q) 
for testingwhether all c effect sizes are equal. Qis 
the sum of weighted (by the inverse of the vari­
aDce of each effect size) squared differences 
behveen each effect size and the inverse variance 
weighted average of the effect sizes. It sounds 
messy but the computations are quite simple 
(Gurevitch & Hedges 1993, Hasselblad 1994). Qis 
distributed as a .r with c~ 1 degrees of仕'eedom
In some cases , the analyses being combined fall 
into different a prio时 groups (e.g. studies on com­
petition in marine，仕eshwater and terrestrial 
environments) and within-group and behveen­
group measures ofhomogeneity can be ca1culated 
(analogous to partitioning the variance in an 
ANOVA - Chapter 8). 

Meta-analysis can be used in any situation 
where an effect size, and its variance , can be cal­
culated so it is not restricted to continuous vari­
ables. Nor is it restricted to 且xed e丘ects models , 

with both random and mixed models possible 
(Gurevitch & Hedges 1993; see also Chapters 8 and 
9). Meta-analyses do depend on the quality ofthe 
lìterature being surveyed. For some studi凹， not 
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3.5.1 Combining P values 
Fisher (1954) proposed a method 岛r combining 
the P values from a number of independent tests 
of the same hypothes凹， even though different stat­
istical procedures , and therefore different Hos. 
may have been used (see also Hasselblad 1994 , 

Manly 2001 , Sokal & Rohlf1995). For c independent 
tests. each producing aPvalue for the testof a com­
mensurate Ho' the P values can be combined by 

Combining results from 

statistical tests 

We sometimes need to evaluate multiple studies 
in which statistical analyses have been used to test 
similar hypotheses about some biological process , 

such as the effect of a particular experimental 
treatment. Our interest is in summarizing the 
size ofthe treatment effect across studies and also 
testing an Ho about whether there is any overall 
efi岳ct of the treatnlent 

3.5 

J;...，......←一

(3.11) 

which is dist口buted as a .r with 2c degrees of 
仕eedom. The overall Ho is that all the Hos in the 
collection oftests are true (Sokal & Rohlf 1995). If 
wer句ect the overall Ho' we conclude that there is 
an overall effect ofwhatever treatment orcontrast 
was commensurate between the analyses 
Alternative methods , including ones that weight 
the outcomes from the different tests differently, 

are desc 口bed in Becker (1994) and Manly (2001) 

3.5.2 Meta-analysis 
The limitation ofFisher's method is that P values 
are only one piece of information that we use for 
drawing conclusions 仕"Om a statistical test. They 
simply indicate whether we would reject the Ho at 
the chosen level of significanceτhe biological 
interpretation ofthat result would depend on the 
size of the difference or effect, and the sample 
sizes. so a better approach 飞、/Ould incorporate 
effect sizes , the variances of the effect sizes and 
sample sizes when combining results from differ­
ent tests. Such a more sophisticated approach is 
cal1ed meta-analysis. Meta-analysis is used primar­
ily when reviewing the hterature on a particulal 

2 L: ln(P) 

αIc where αis the nominated signifìcance level 
(e.g. 0.05) and c is the number of comparisons in 
the family. It provides grea t con trol overτ'ype 1 
error but is very conservative when there are lots 
of comparisons. i.e. each comparison or test wiII 
have little po飞rVer. The big advantage is that it can 
be applied to any situation where we have a family 
oftests , so it has broad applicability. 

Dunn-Sidak procedure 
τbis is a modifìcation ofthe Bon坠rroni procedure 
that slightly improves power for each comparison, 

which is tested at 1 ~ (1α)'扣

Sequential Bonferroni (Holm 1979) 
τ'his is a major improvement on the Bonferroni 
procedure where the c test statistics (F, t , etc.) or P 
values are ranked 仕um largest to smallest and the 
smallest P value is tested atαIc， the next at 
αI(c 一 1) ， the next at 叫乍 到， etc. Testing stops 
when a non-significant resu1t occurs. This proce­
dure provides more power for individual tests and 
is recommended for any situa tion in which the 
Bonferroni adjustment is applicable 

Hochberg (1988) described a similar procedure 
that works in reverse. The largεst P val ue is test，巳d
atα， rejecting all other tests if this one is signifi. 
cant. If not signi直cant， the next largest is tested 
againstα12 ， and so on. Shaffer (1995) stated that 
Hochberg's procedure is slight1y more powerful 
than Holm's 

Resampling-based adjusted Pvalues 
Westfall & Young (1993a ,b) have developed an 
interesting approach to P value adjustment for 
multiple testing based around resampling 咀ley

defined the adjusted P value as 

P_" =Plmin P ,o;PIHJ adj 飞 rand _.L 1....0' 

where Prand is the random P value for any test. 
Basically, their procedure measures how extreme 
any parti口J1ar P value is out of a list of P values 
仕-offi multiple tests , assuming all Hos are true 
Westfall & Young (1993b) ar伊e that their proce­
dure generalizes to Holm's and other methods as 
special cases and also accounts for correlations 
among the Pvalues. 

(3.10) 
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always false. Like Chow (1988.1991) and Mulaik et 
al. (1997). we argue that the Ho is simply the com­
plement of the research hypothesis about which 
we are trying to make a decision. The Ho repre­
sents the default (or null) 仕amework that 
"nothing is happening" or that "there is no effect" 
。1.1). A rejection of the Ho is not important 
because we thought the Ho might actually be true. 
It is important because it indicates that we have 
detected an effect worth reporting and investigat­
ing further, We a150 emphasise that Hos do not 
have to be of the "no effect" form. There may be 
good reasons to test Hos that a parameter equals a 
non-zero value. For example , in an environmental 
monitoring situation, we might compare control 
and impact locations to each other, and look for 
changes through time in this control-impact dif­
ference. We might 且nd that two locations are 
quite dif:也rent from each other as a result of 
natural processes , but hypothesize that a human 
activity will change that relationship 

3.6.5 Arbitrary signifìcance levels 
One long-standing criticism has been the arbitrary 
use of α= 0.05 as the criterion for rejecting or not 
rejecting Ho' Fisher originally suggested 0.05 but 
later argued against using a single significance 
level for every statistical decision-making process 
The Neyman-Pearson approach also does not rely 
on a single signi且.cance level (α). just a value 
chosen a prio时 τhere is no reason why all tests have 
to be done with a significance level fixed at 0.05 
For example. Day & Quinn (1989) have argued that 
there is nothing sacred about 0.05 in the context of 
multiple comparisons. Mapstone (1995) has al50 
provided a decision-making framework by which 
the probabilities ofType 1 and Type Il errors are set 
based on our assessment ofthe cost ofmaking the 
two types of error (Section 3.2.2)τhe point is that 
problems with the arbit四ry use ofO.05 as a signifi­
cance level are not themselves a reason to dismiss 
statistical hypothesis testing. Irrespective ofwhich 
philosophy we use for making statistical decisions , 

some criterion must be used 

3.6.6 Alternatives to statistical hypothesis 
testmg 

In the discussions on significance testing, particu 
larly in the psychologicalliterature. three general 

argument, detailed by Mayo (1996). is that likeli­
hoods do not permit measures of probabilities of 
error 仕om statistical tests. Measuring these errors 
in a 企equentist sense is crucial to statistical 
hypothesis testing 

3.6.3 P values as measure of evidence 
Cohen (1994) and others have argued that what we 
really wan t to know 丘。m a statistical test is the 
probability of Ho being true, given our sample 
data, i.e. P(Ho I data). In contrast. Mayo (1996) pro­
posed that a 仕'equentist wants to know what is 
"the probability with which certain outcomes 
would occur given that a specified experiment is 
performed" (p. 10). What the c1assical significance 
test tells us is the long-run probability of obtain. 
ing our sample data , given that Ho is true, i.e. 
p(da叫 Ho)' As Cohen (1994) and others have 
emphasized, these two probabilities are not inter­
changeable and Bayesian analyses (Section 3.7). 
which provide a measure of the P(Ho I data). can 
produce results very different 仕om the usual sig­
nificance test, especially when testing two但iled

"point" hypotheses (Berger & Sellke 1987). Indeed. 
Berger & Sellke (1987) presented evidence that the 
P value can greatly overstate the evidence against 
the Ho (see also Anderson 1998 for an ecological 
example). We will discuss this further in the next 
section. In reply to Berger & Sellke (1987). Morris 
(1987) argued that differences between P values 
and Bayesian posteriors will mainly occur when 
the power ofthe test is weakat small sample sizes; 
otherwise P values work well as evidence against 
the Ho' Reconciling Bayesian measures and P 
values as evidence against the Ho is still an issue of 
debate among statisticians 

3.6.4 Null hypothesis always false 
Cohen (1990) and others have also argued that 
testing an Ho is trivial because the Ho is always 
false: two population means 飞.vill never be exactly 
the same , a population parameter will never be 
exactly zero. In contrast. Frick (1995) has pointed 
out an Ho can be logically true and illustrated this 
with an ESP experimentτhe Ho was that a person 
in one room could not influence the thoughts of 
a person in another rOOID. Nonetheless , the ar.凯j­

rnent is that testing Hos is pointless because most 
cornmon Hos in biology, and other sciences , are 

il; Box 3.51 Likelihood inference and the likelihood principle 

Oakes (1986) described four major schools of statistical inference, three of which 
we describe in this chapter •- Fisherian and Neymar卜Pearson hypoth四5 te白吗

aspects of both being used by many biologists, and the Bayesian methods based on 
subjective probabilitìes. The fourth school is likelihood in古巴陀 nce ， based 0门 the like 
lihooc 仇unction that we ou甘 ined in Chap恒r 2 (see al50 Royall 1997). There a陪 two

important issues involved. First, the evidence that the obse川ed data provide about 
the hypothesis 巴陀pr巴ented by the likelihood fu们 ction ， the likelihood of observ 们 Z

our sample data gÎven the hypothesis. Seco们 d ， the likelihood pr 们 ciple states that 
two sets of data that produce proportionallikelihc 对 fu门口旧 ns a陀 eql时 In terms 
of evidence about the hypothesi三 One of the arguments often used against stat巴
tical signi们cance tests is that they violate the likelihood principle 

Likelihood infer凹 ce 巳 really about relative measur臼 of evidence of 凹ppo内

betINeen competing hypotheses so the focus is on the I制ihood ratio 

旦旦旦
L(dataIH,) 

a民hough， as disc山sed in Chapter 2, we often cor 町t likelihoo 企 to log-likelihoc 才 s

and the result is a ratio of log-likelihood旦 The likelihood ratio can be viewe 才 asa

measure of the relat附 strength of evidence provided by the data in H I compared 
with Hγ 

Likel品。 c 才 5 a陀 relevant to both classical and ßayesian in缸陀nce. Likelihood 
ratios can often be tested in a classical framework because. under many conditions, 

the ratio follows a X 2 distribution. The observed data contribute to a ßayesian ana­
Iysis solelythrough the likelihood function and, with a non-informative , uniform prio r; 

t气e ßayesian posterior probabil民yd巴tribution has an identical shape to the likeli 
扣。 od function 
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3.6.2 Sample space - relevance of data 
门口t observed 

A well-documented aspect of P values as measures 
of evidence is that they comprise not only the 
long-run probability of the observed data if Ho is 
true but also of data more extreme , i.e. data not 
observed. The set of possible outcomes of an 
experiment or sampling exercise , such as the pos­
sible values of a random variable like a test statis 
tic , is termed the sample space. The dependence of 
statistical tests on the sample space violates the 
likelihood principle (Box 3.5) because the 5ame 
evidence , measured as like1ihoods , can produce 
different conc1usion5 (Royall 1997). The counter 

can produce a signi且cant result. Howev凹， while 
this is true by de直nition and can cause problems 
in complex analyses (e.g. factorial ANOVAs) where 
there are numerous tests based Qn different df, 

designingεxperiments based on a priori power 
considerations is crucial here. Rather than arbi 
trarily choosing sample sizes , our sample size 
should be based on that necessary to detect a 
desired effect if it occurs in the population(s) 
(Cohen 1988. 1992, Fairweather 1991. Peterman 
1990a，b)τhere is nothing new in this recommen 
dation and we will consider power analysis 
且uther in Chapter 7. 

The sample size problem relates to the stop­
ping rule, how you decide when to stop an experi­
ment or sampling program. In classical 
hypothesis testing, how the data were collected 
influences how we interpret the result ofthe test , 

whereas the likelihood principle (Box 3.5) reqllires 
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more commonly, use the magnitude of the Bayes 
factor as evidence in favor of a hypothesis 
A simpler alternative to the Bayes factor is 
the Schwarz criterion (or Bayes Information 
Criterion. BIC). which approximates the log of the 
Bayes factor and is easy to ca1culate. Ellison (1996) 
has provided a table relating different sizes of 
Bayes factors (both as log,oB and 210g,B) to conc1u 
sions against the hypothesìs in the denominator 
of Equation 3.14. Odds and likelihood ratios "凡11
be considered in more detail in Chapters 13 and 
14. 

Computational formulae for various types of 
analyses , including ANOVA and regression linear 
models. can be found in Box & Tiao (1973). while 
Berry & Stangl (1996) have summarized other 
types of analyses. Hilborn & Mangel (1997) focused 
on assessing the fit of models to data using 
Bayesian methods. In a fisheries example , they 
compared the fit oftwo models ofthe dynamics of 
hake off the coast of Namibia where one model 
was given a higher prior probability of being 
correct than the second model. As another 
example. Stow et al. (1995) used Bayesian analysis 
to estimate the degree of resource dependence (φ) 
in lake mesocosms wi th diff桂rent ratios of grazing 
Daphnia. Using a non-informative prior, a high 
value of 中， indicating much interf坦rence among 
the predators. had the highest posterior probabil­
ity. Stow et al. (1995) pointed out that. in contrast. 
classical statistical analysis would only have 
shown that <þ was significantly different to some 
hypothesized value. A third exaluple is Cronle et 
al. (1996). who compared Bayesian (with a range of 
prior distributions) and classical 1inear model 
analyses of a BAC[ (Before-Mter-Control怕pact)

design assessing the effects of logging on birds 
and mammals in a north Queensland rainforest 
Although the two approaches produced similaI 
conclusions for some variables , the posterior dis 
tributions for some variables clearly favored some 
effect sizes over others , providing more informa 
tion than could be obtained 仕om the classical test 
of a null hypothesis 

When c1assical P values [叫data [Ho)[ are com 
pared to Bayes factors or Bayesian posterior prob. 
abilities [P(Ho I data)[. the di能rences can be 
marked , even when Ho and H

A 
are assigned equal 

prior probabilities (i.e. considered eqllally likely) 

(simple) hypothes凹， e.g. Ho: () equals some spec­
ified value, because we cannot determine the 
probability of a single value in a probability distri­
bution of a continuous variable 

We can pres巳nt the relative evidence for Hü 
and H

A 
as a posterior odds ratio 

i.e. the ratio of the posterior probabilities , given 
the data. of the competing hypotheses (Reckhow 
1990) 四is posterior odds ratio is also the product 
of the prior odds ratio wi th a term called the Bayes 
factor (Barnett 1999. Ellison 1996. Kass & Raftery 
1995. Reckhow 1990). [f the two hypotheses were 
considered equally likely beforehand. then the 
Bayes factor equals the posterior odds ratio. [f the 
p口or odds were different, then the Bayes factor 
wi11 differ 仕om the posterior odds ratio. although 
it seems that the Bayes factor is primarily used in 
the situation of equal priors (Kass & Raftery 1995) 
Both the Bayes factor and the poste口or odds ratio 
measure the weight of evidence against H

A 
in 

favor of Ho' al吐lough the calculations can be 
reversed to measure the evidence against Ho 

When both hypotheses are simple (i.e. e equals 
a specified value). the Bayes factor is just the like­
lihood 阻tio (Box 3.5) 

(3.13) 

(3.14) 

where the numerator and denominator are the 
maxima of the likelihood functions for the val11es 
of the parameter speci且ed in the hypotheses. 
When one or both hypotheses are more complex, 

the Bayes factor is still a likelihood ratio but the 
numerator and denominator ofEquation 3.14 are 
determined by integrating under the likelihood 
functions for the range of parameter values spe­
口fic in each hypothesis (Kass & Raftery 1995). We 
are now treating the likelihood functions more 
like probability distriblltions. For complex 
hypotheses with multiple parameters , this inte 
gration may not be straightforward and the 
Monte Carlo posterior samp1ing methods men 
tioned in Chapter 2 might be required. 

To choose between hypotheses , we can either 
set up a decision framework with an a priori criti 
cal value for 出e odds ratio (Winkler 1993) or. 

B~旦旦旦旦i
L(dataI HA) 

旦旦旦旦L
P(HA I data) 

jn!

…if--

some circumstances is Bayesian methodology. As 
飞tVe discussed in Chapter 2, the Bayesian approach 
views population parameters (e.g. means , regres­
sion coeffìcien臼) as random, or at least unknown , 

variables. Bayesians construct posterior probabil­
ity distributions for a parameter and use these 
probability distributions to ca1culate confidence 
intervals. They also use prior information to 
modi命 the probability distributions ofthe param­
eters and this prior in岛rmation may include sub­
jective assessment of prior probabilities that a 
parameter may take specifìc values 

The Bayesian approach rarely incorpora恒s

hypothesis testing in the sense that we have been 
discussing in this chapter and Bayesian do not 
usually evaluate a1ternative hypotheses or models 
with a r句ect/accept decision framework. τ'hey 

simply attach greater or lesser favor to the alterna 
tives based on the shape of the posterior distribu 
tions. Nonetheless , there are some formal ways of 
assessing competing hypotheses using Bayesian 
methods 

We might, for example , have two or more rival 
hypotheses (吨. H2....H;); i口 the c1assical hypothe­
sis testing 仕ame'V、IOrk， these would be Ho and HA, 

although a null hypothesis of no effect would 
seldom interest Bayesians , We can then use a 
similar version of Bayes theorem as described for 
estimation in Chapter 2 

刀1e posterior probability is obtained by integrat. 
ing (if the parame胆r in the Ho is continuous) or 
summing (if discrete) under the posterior prob­
ability distribution 岛r the range of values of the 
pa四meter specified in the Ho. For continuous 
parameters , the procedure is straightforward for 
directional (composite) hypotheses. e.g. Ho; e less 
than some specified value. but difi且cult for a point 

(3.12) 

(3.11) 

where P(H, 1 data) is the posterior probability ofHj, 
P(H,) is the prior probabili可 of H, and 
P(data [H,I1P(data) is the standardized likelihood 
function for Hj' the likelihood of the data given 
the hypothesis. For example , we could test an Ho 
using the Bayesian approach by 

posterior probability of Ho ~ likelihood 
of data given Hop口or probability ofHo 
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alternatives have been proposed. First, Cohen 
(1990. 1994) and Oakes (1986) and others have 
argued that interval estimation and determina­
tion of effect sizes (with confidence inte凹als) is a 
better alternative to testing null hypotheses 
m币lile we encourage the use and presentation of 
effect sizes , we do not see thern as an alternative 
to signifìcance testing; rather, they are comple­
mentary. Interpreting signifìcance tests should 
always be done in conjunction with a measure of 
effect size (e.g. difference between means) and 
some form of confidence inte凹a1. However, effect 
sizes by themselves do not provide a sensible phil 
osophical basis for making decisions about scien­
tific hypotheses 

Second. Royall (1997) summarized the view 
that likelihoods provide all the evidence we need 
when evaluating alternative hyp咀theses based on 
the observed data. Finally. the Bayesian approach 
of combining prior probability with the 1ikeli­
hood function to produce a posterior probability 
distribution for a parameter Or hypothesis will be 
considered in the next section 

[n summary. biologists should be aware of the 
1imitations and tlaws in statistical testing of null 
hypotheses but should also consider the philo­
sophical rationale for any alternative scheme 
Doesitpro世de us with an objective and consistent 
methodology for making decisions about hypoth­
eses? We agree with Dennis (1996). Levin (1998). 
Mulaik et a1. (1997) and others that misuse ofstat­
istical hypothesis testing does not imply that the 
process is tlawed. When used cautiously, linked to 
appropriate hypotheses. and combined with other 
岛rms of interpretation (inc1uding effect sizes and 
confidence interval叶， itcan provide a sensible and 
intelligent means of evaluating biological hypoth­
eses. We emphasize that statistical significance 
does not necessarily imply biological importance 
(Box 3.4); only by planning studies and experi 
ments so they have a reasonable power to detect 
an effect of biological importance can we relate 
statistical and biological signifìcance 

Bayesian hypothesis testing 

One approach that may provide a realistic a1terna­
tive to c1assical statistical hypothesis testing in 



Berger & Sellke (1987) and Reckhow (1990) argued 
that the differences are due to the P value being 
"conditioned" on the sample space, inc1uding an 
area of a probability distribution that includes 
hypothetical samples more extreme than the one 
observed (Section 3.6.2). In contrast, the Bayesian 
posterior probabili飞Y is conditioned only on the 
obse凹ed data through the likelihood , The differ­
ences between P values and Bayesian posterior 
probabilities seem more severe 岛r tw任tailed

testing problems (Casella & Berger 1987), where 
the P value generally overstates the evidence 
against Ho' Ï.e. it rejects Ho when the posterior 
probability suggests that the evidence against Ho 
is relatively weak. Nonetheless , P values will 
mostly have a monotonic relationship with poste­
riorprobabilities ofHo' i.e. smaller Pvalues imply 
smaller posterior probabiliti时， and 岛ron←tailed

tests (e.g. ANOVA F-ratio tests) , there may be equiv­
alence between the P values and posterior prob­
abilities for reasonable sorts of prior distributions 
(Casella & Berger 1987) , So it may be that the rela­
tive sizes of P values can be used as a measure of 
relative strength of evidence against Ho' in the 
sense that they are related to Bayesian posterior 
probabilities (but see Schervish 1996; also Royall 
1997 for alternative view) 

One of the main dif且culties c1assical 仕equen­

tist statisticians have with Bayesian ana非ses is the 
nature of the prior information (i.e. the prior 
probabilities). We discussed this in Chapter 2 and 
those issues , particularly incorporating subjective 
probability assessments , apply just as cru口ally for 
Bayesian hypothesis testing. 

So, when should we adopt the Bayesian 
approach? We have not adopted the Bayesian phi 
losophy for the statistical analyses described in 
this book for a number of reasons, both theoreti 
cal and practical. First, determining prior prob­
abilities is not straight岛rward in those areas of 
biology, such as ecology, where much of the 
research is sti1l εxploratory and what happened at 
other times and places does not necessarily apply 
in a new setting. We agree with Edwards (1996) 
that initial analyses of data should be "journalis 
tic" , i.e. should not be influenced by our opinions 
ofwhat the outcome might be (priorprobabilities) 
and that there is an argument that using prior 
(personal) beliefs in analy咀s should not be 

classified as science. While Carpenter (1990) and 
others have argued that the prior probabilities 
have relatively little influence on the outcome 
compared to the data , this is not always the case 
(Edwards 1996). For the types of analyses we will 
discuss in this book, any prior information has 
probably already been incorporated in the design 
components of the 四periment. Morris (1987) has 
argued that P values ar它 l口terpretable in well­
designed experiments (and observational studies) 
where the power to detect a reasonable HA (effect) 
has been explicitly considered in the design 
process. Such a well-designed 凹qJeriment expli­
citly considering and minimizing乃peland Type 
II errors is what Mayo (1996) would describe as a 
severe test of an hypothesis. Second , treating a 
population parameter as a random variable does 
not always seem sensible. ln ecology. we are often 
巳stimating parameters of real populations (e.g 
the density ofanimals in an area) and the mean of 
that population is a fixed , although unknown, 

value. Third , Bayesian ana与ses seem better suited 
to estimation rather 出an hypothesis testing (see 
also Dennis 1996). Some well-known Bayesian 
texts (e.g. Box & Tiao 1973 , Gelman et aJ. 1995) do 
not even discuss hypothesis testing in their 
Bayesian 仕amework. In contrast, the philosophi­
cal position we take in this book is clear. Advances 
in biology will be greatest when unambiguously 
stated hypotheses are tested with well-designed 
sampling or preferably experimental methods. 
Finally, the practical application of Bayesian ana­
lyses is not straightforward for complex analyses 
and there is little software currently available (but 
see Berry 1996, Berry & Stangl1996 and references 
in Ellison 1996). We suspect that ifbiologists have 
enough trouble understanding cIassical statisti­
cal analyses, Bayesian analyses , with their reli­
ance on defining probability distributions and 
likelihood functions explicitly, are more likely to 
be misused 

There are some circumstances where the 
Bayesian approach will be more relevant. ln envi­
ronmental manageme旺. managers often wish to 
know the probabili可 of a policy having a certain 
outcOlne or the probabilities of different policies 
being successfu l. VVbether policies are signifi­
cantly dif:坠rent 企om one another (or different 
from some hypothesized value) is not necessarily 
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help且1址1 and Bayesian ca1c口ulation of posterior 
nrobab切ilitie臼s of competing models m口11咆gh肚t be 
appro叼P严r口1且皿at，配e.H山or口rn盹1&川川'"
s且ize Bayeslan 1虹n卫1ethods for di四sungu山1四shi皿ngbetween1 

competing models , This in itself has difficll1ties 
Dennis (1996) correctly pointed out the danger of 
yarious interest groups having input into the 
development of prior probabilities , although we 
have argued earlier (Section 3.2.2) that such nego 
tiation in terms of error rates in the cIassical deci 
sion-making framework should be encouraged 
One-o吁: unreplicated, experiments might also be 
more suited to Bayesian analyses (Carpenter 1990) 

lit-Ml 

because the long-run 丘equenξy interpretation 
doesn't have much meaning and the probabili叩
of a single event is ofinterest 

Bayesian approaches are being increasingly 
used for analyzing biological data and it is impor 
tant for biologists to be familiar with the 
methods. However, rather than simply being an 
alternative analysis for a given situation , the 
Bayesian approach represen臼 a different philoso 
phy for interpreting probabilities and we , like 
Dennis (1996), emphasize that this must be borne 
in mind before it is adopted for routine use by 
biologists. 
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Chapter 4 

Graphical exploration of data 

Graphical displays are very important in the ana­
lysis of data. There are four main 且lnctions of 
graphical displays in data analysis (Snee & Pfeifer 
1983) 

• Exploration, which involves checking data for 
unusual values , making sure the data meet the 
assumptions of the chosen analysis and Qcca-
sionally deciding what analysis (or model) 臼
use 

• Analysis , which includes checking assump­
tions but primarily ensuring that the chosen 
model is a realistic fit to the data 

• Presentation and communication ofresults , 

particularly summarizing numerical informa 
tion (Chapter 19). 

• Graphical aids , which are graphical displays 
for specific sta tistical purposes, e.g. power 
cu凹es for determining sample sizes. 

We describe graphical displays for the 直rsttwo
且lnctions here, and the third in our 白nal cha pter, 

although some graphs are use白11 for more than 
one 且lnction， e.g. scatterplots of Y against X are 
important exploratory tools and often the best 
way of communicating such data to readers 

4.1 1 Exploratory data analysis 

Before any 岛rmal statistical analysis is carried 
out. it is essential to do preliminary checks of 
your data for the following reasons 

• to reassure yourselfthat you do actually have 
some meaningful data , 

• to detect any errors in data entry, 

• to detect patterns in the data that may not be 
revealed by the statistical analysis that you will 
use , 

• to ensure the assumptions of the analysis are 
met, 

• to interpret departures 仕om the assumptions , 

and 
• to det，巳ct unusual values. termed outliers 

(Section 4.5). 

Exploratory data analysis (EDA) was originally 
developed by john Tukey (1977) and extended by 
Hoaglin et al. (1983). 111e aim is basically to 
describe and fìnd patterns in your data. A good 
introduction for biologists is given by Ellison 
(1993) 

4_1_1 Exploring samples 
It is usually veηimportant 也 become familiar 
飞叽th your data before doing any formal analysis 
V\1hat sort of numbers are they? How variable are 
they? What sort of distribution do they have? For 
small data sets , simply examining the raw data in 
rows and columns is possible. For large samples , 

especially with multiple variables , graphical tech­
niques are much more appropriate 

The most important thing we want to know 
about our sample data. and therefore about the 
population 仕om which our data came , is the 
shape of the distribution. Many of the statistical 
procedures we describe in this book assume, to 
some extent, that the variables being analyzed 
have normal distributionsτhe best way of exam­
ining the distribution of values of a variable 

非非一-co一一 Histograms and 
boxp 。臼 for (a) normal and 
(b) positively skewed 由阻 (n = 200) 2Liti--

Kη 

Y 

is with a density plot, where the frequencies 
("densities") of di他rent values , or categories , are 
represented. Many of the graphs described below 
are density plots and show the shape of a sample 
distribution 

Histogram 
One simple way of examining the distribution of 
a variable in a sample is to plot a histogram, a 
graphical representation of a 仕equency (or 
density) distribution. Ahistogram is a type ofbar 
graph (see Chapter 19) grouping the observations 
into a ptiori defìned c1asses on the horizontal axis 
and their 丘'equency on the vertical axis (Fi阴阳
4.1). Ifthe variable is continuous , the size (width) 
of the classes will depend on the number of obser­
vations: more observations mean that more 
classes can be used τhe values of a discrete vari­
able usually determine the c1asses. Histograms 
are very useful for examining the shape of a distri­
bution of observations (Figure 4.1). For example , is 
the distribution symmetrical or skewed? Is it uni­
modal or multimodal?τhe vertical axis of a histo­
gram can also be relative 仕equency (proportions) , 

cumulative frequency or cumulative relative fre­
quency. Unfortunately, histograms are not always 
particularly useful in biology, especially experi­
mental work, because we are often dealing with 
small sample sizes (<20). 

Ause也1 addition to a histogram is to superim­
pose a more formal probability density function. 
For example , we could inc1ude a normal probabil­
ity distribution function , based on our sample 
mean and variance. An alternative approach is to 
not stipulate a specifìc distribution for the sample 

but to use the observed data to 
generate a probability density 
curve. This is non-parametric 
estimation because we are not 
assuming a specifìc underly­
ing population distribution 
for our variable. Our estima­
tion procedure may produce 
probability density curves that 

are symmetrical, asymmetrical or multimodal, 
depending on the density pattern in the obse凹ed

data. The standard reference to non-parametric 
densi艾y estimation is Silverman (1986) and the 
most common method is kernel estimation. For 
each observation , we construct a window of a 
certain width, like the categories in a histogram 
We then 且t a symmetric probability density func­
tion (called the kernel) to the observations in each 
window; commonly, the normal distribution is 
used.τhe estimated density for any value of our 
variable is simply the sum of the estimates 仕om
the density functions in each windowτ'he calcu 
lations are tedious , even when the kernel is a 
normal distribution, but kernel density estima 
tors are now common options in statistical soft 
ware 

111e window width is sometimes termed the 
smoothing parameter because it influences the 
shape offìnal estimated density function. For stan­
dard kernel density estimation. the smoothing 
parameter is constant for all observations; other 
approaches allow the smoothing parameter to 
vary depending on the local density of data 
(Silverman 1986). If the smoothing parameter is 
low (narrow windows) , then the density 且mction
can have numerous modes , many artificial if the 
sample size is smal1. Ifthe smoothing parameter is 
high (wide windows), then the density function 
will be much smoother but important detai1. such 
as real modes, might be missed. Clearly, kernel 
estimation requires a large sample size so that 
吐lere can be enough observations to reliably fìt a 
probability densi飞y function (e.g. normal) in each 
window and also enough windows to represent 

Y 
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革矗矗晶I (a) Boxplots for 
number of eggs per capsule of the 
predatory gastropod Leþsiella vinosa 

from cwo zones on a rocky 
intertidal shore (see Chapter 3). (b) 
Boxplo臼 (or metabolic rate of male 
and female fulmars (see Chapter 3) 

* 

20 

Components of a 

outliers 

j I f 

smallest 
value 

卜- * 

(b) 

25% 

) 

25% 

Y 

) 

25% 25% 

(a) 

「

GRAPHICAl EXPLORATION OF DATA 60 

estimation for bivariate distributions (see Chapter 
5) and for determining density functions foruse in 
procedures such as discriminant function analysis 
(Silverman 1986) 

~Ill 

Dotplot 
A dotplot is a plot where each observation is rep­
resented by a single dot or symbol, with the value 
of the variable along the horizontal axis 
(Wilkinson 1999a). Dotplots can be used for uni­
variate and bivariate data (Sasieni & Royston 
1996); in the latter case , they are like scatterplots. 
Univariate dotplots can be very effective ways of 
representing single samples because skewness 
and unusually large or small values are easy to 
detect (Figure 4.3). 
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z not be particular1y appropri­

ate as a measure of the center 
of a distribution 

More elaborate boxplots 
are a150 available. Hyndman 
(1996) described a modifica­

tion of the boxplot that graphs high-density 
regions and shows bimodality very well 
Rousseeuw et al. (1999) described the bagplot, a 
bivariate version of the boxplot. Both papers pro­
vided computer code for these plots 

Scatterplot 
When we have two variables , each measured on 
the same units , we are often interested in the rela 
tionship between the variables. A very important 
graphical technique is the scatterplot, where the 
vertical axis represents one variable , the horizon 
tal axis represents the other variable and the 
points on the plot are the indi叫dualobservations

(Chapter 5). Scatterplots are very informative, 

especially when bordered by boxplots for each var­
iable (Figure 5.3). Nonlinearity and outliers can be 
iden tified, as well as departures 仕om fìtted linear 
models 

Scatterplot matrix (SPLOM) 
An extension of the scatterplot to three or ll10re 
variables is the scatterplot matrix (SPLOM). Each 

Male Female 
Sex 

·τ'he variability ofthe sample is indicated by 
the distance between the whiskers (with or 
without the outliers) 

• The shape ofthe sample , especiallywhether it is 
symmetrical or skewed (Figure 4.1, Figure 4.3) 

• The presence of outliers , extreme values very 
diff是rent 仕om the rest ofthe sample (Figure 4.3) 

Because boxplots are based on medians and 
quartiles , they are very resistant to extreme 
values, which don't affect the basic shape of the 
plot very much (Chapter 2). The boxplots and dot­
plots for the concentrations OfS0

4
2- and C1- from 

39 stream sites in the Catskill Mountains are pre­
sented in Figure 4.3 (Lovett et a!. 2000 , Chapter 2). 
The skewness and outliers present in the sample 
of Cl- are clear, in contrast to the symmetrically 
disttibuted SO/-. Boxplots can also be used to 
graphically represent summaries of data in 
research publications (Chapter 19) instead ofthe 
more traditional means (土 standard deviations or 
sinülar). This is particularly the case when non­
parametric analyses are used , as the mean might 

o 
Mussel 

Zone 
Litlorinid 

5 

。

Boxplot 
A good alternative for displa:归ng the sample 
observations of a single variable, when we have 
a sample size of about eight or more , is to use a 
boxplot (Figure 4.4 and Figure 4.5) , a150 called a 
box-and-whiskers plotτ'he boxplot uses the 
median to identi穹 location and 25% quartiles for 
the hinges (ends of the box). The difference 
between thevalues ofthe two hinge5 is called the 
spread. Unusually large or small values (outliers) 
are highlighted , although the actual formulae 
for identifying outliers vary between different 
textbooks and statistical software (commonly, an 
outlier is any value greater than 1.5 times the 
spread outside the closest hinge). The lines (or 
whiskers) extend to the extreme values within 
1.5 times the spread beyond the hinges. Boxplots 
effìciently indicate several aspects of the sample 

Y 

with normal density function (dashed 
I density curve or smo。由 (solid line) for a 

positively skewed distribution (n = 200). Smo。由ing

parameter for kernel curve equals one 

·τ'he middle of the sample is identified by the 
median, which is resistant (robust) to unusual 
values (Chapter 2) 

the detail present in the data τ'he choice of the 
probability density function fi吐ed in each window 
is also determined by the user. Symmetrical distri­
butions such as normal are most common, 

although others are possible (Silverman 1986) 
For the positively skewed distribution plotted 

in Figure 4.2 , it is clear that a normal distribution 
function based on the sample mean and variance 
is not agood fit to the data. In contrast. the non-par­
ametric kernel smoothing curve is a much more 
realistic representation of the distribution of the 
dataτ'he kernel density estimator is particularly 
useful as an exploratory tool for desc口bing the 
shape ofa distribution ifwe have a sample ofrea 
sonable size and may indicate what more formal 
parametric distribution should be used in model 
ing (see Chapter 13). Other uses include density 

」

。

80 

。

T 
70 

。

。

T 
60 

I 

50 

C卜

T 

40 

g罄。。
T 

30 
1 

75 

(,) 

←一「τIJ一一

80/ 

。
00 

能
000 000 岛

出
俨

000 00 
0000 00000 000OTE 

T 
70 

I 
6日5

• 

60 

O 

50 

口。tplots and boxplots 
of concentrations of (a) SO/~ and 
(b) CI- for 39 sites from forested 
watersheds in the Catskill 
Mountains in New York State (da回
from Lovett et 01. 2000) 



GRAPHICAL EXPLORATION OF DATA 

~士3一一 , 
。

。

。镇刑。也仕*
8 。 。

。~电 事非g耻 fo 'ô 
。。

, '薛飞。。 一--{二E卜一-。 o tp o 。 口 D 。

SOl• 

CI 

Elevation 

SOl CI- Elevation 

Scatterplot matrix for three variables (site 
elevation, concentration of 50",2- and concemration of CI-) 
(or 39 sites from forested watersheds in the Catskill 
问。"n阻ins in NewYork State (data from Lovett et aJ. 2000) 

panel in the matrix represents a scatterplot 
between two of the variables and the panels along 
the diagonal can indicate which variable forms 
the horizontal and vertical axes or show other uni­
variate displays such as boxplots or frequency dis­
t 口butions (Figure 4.6). Recently, Murdoch & Chow 
(1996) illustrated a method for displaying large 
correlation matrices (Chapter 15), where different 
shaped and angled ellipses represent the magni­
tude of the correlation 

Multivariate plots 
There are other, more complex, methods for 
graphing multivariate data, including icon plots , 

such as Chernoffs faces and the like (see Chapter 
15; also Cleveland 1994, Tufte 1983)。

4.2 I Analysis with graph~ 

Most ofthe analyses thatwe describe in this book 
are based on linear models (regression and analy­
sis ofvariance models)τhese analyses have impor­
tant assumptions , besides that of randorn 
sampling, that must be assessed before linear 
models (or even t tests) can be applied. We discuss 
these assumptions in detail in the relevant chap­
ters , bllt briefly introduce them here in the 

context of exploratory data a口alysis. Sometimes , 

these assumptions are not critical because the 
result of your analysis (estimation or hypothesis 
tests) will be the same even ifthe assumptions are 
violated. Such tests are termed robust. Other 
assumptions are critical because the statistical 
test may give unreliable results when assump­
tions are violated. 

4.2.1 Assumptions of parametric linear 
models 

η1e assumptions of linear models apply to the 
response (or dependent) variable and also to the 
error terms from the fitted model 

Normality 
Linear models are based on OLS estimation and 
the reliability of interval estimates and tests of 
parameters depends on the response variable 
being sampled 仕om a population (or populations) 
with a normal (Gaussian) distribution. Most ana­
lyses are robust to this assumption, particularly if 
sarnple sizes are equal. Despite this robustness , 

the symmetry (roughly equal spreads on each side 
of the mean or median) of each sample should be 
checked with a graphical procedure like boxplots 
Another way of assessing normality is to use prob 
ability plots (pplots).ηlese plots examine a cumu 
lative frequency distribution of your data , and 
compare the shape of that distribution to that 
expected of a normal distribution having the 
same mean and variance. If your data are normal, 
the pplot will be a straight line; various kinds of 
skewness , multimodality, etc. , will show as a 
kinked line. A pplot is shown in Figure 4.7 for a 
normal and a lognormal distribution. W恒 don't

suggest that you do any formal analyses of thes巳
plots , but just look for major kinks. The method is 
really only useful for large sample sizes , say 25 or 
more; with fewer data points , you'll always get a 
fairly irregular line. 

τhe most common asymmetry in biological 
data is positive skewness , i.e. populations with a 
long right tail (Figure 4.1). Positive skewness in 
biological data is often because the variables have 
a lognormal (measurement variables) or a Poisson 
(count) distribution. In our experience , skewed 
distributions are more common than symmetri­
cal distriblltions. This makes sense when you 
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五erent processes , such as 
陌气。 20 30 咽 50 60 70 80 whether or not a particular 

αreplica恒 has a 四sponse or 
not, and the level of response 

when it occurs. We could rnake two different com­
parisons - does the likelihood of a response differ 
between groups (Chapters 13 and 14), regarding 
each replicate as zero or not-zer刀， and a compari­
son of the response between groups , using only 
those replicates in which a response occurred 
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realize that most variables cannot have values less 
than zero (lengths , weights , counts, etc.) but have 
no mathematical upper limit (although there 
may be a biologicallimit). Their distributions are 
usually truncated at zero , resulting in skewness in 
the other direction_ Transformations of skewed 
variables to a diff桂rent scale (e.g. log or power 
盯ansformations) will often improve their normal­
ity (Section 4.3) 
世le other distribution that will cause rnajor 

problems is rnultimodal, where there are two or 
more distinct peaks. There is not much that you 
can do about this distribution; both parametric 
and non-parametric tests becorn巳 unreliable. The 
best option is to treat each peak of the distribu­
tion as representing a different "population" , and 
to splityour analyses into separate populations. In 
ecological studies , you might get such a problem 
、Nith different cohorts in a population of plants or 
animals , and be forced to ask questions about the 
mean size of the first , second , etc. , cohorts. In 
physiological or genetic studies , you might get 
such a result 企om llsing animals or plants of diι 
ferent geno可pes. For example, allozymes with 
"fast" and "slow" alleles might produce two di任坦r­

ent c1asses of physiological response , and you 
could analyze the response of fast and slow tissues 
as an additional factor in your experiment 

One 直nal distribution that 0仕:en causes prob­
lems in biological data is when we have many 
zeroes, and a f坦w nonMzero points. In his case , the 
distribution is so skewed that no transformation 
will normalize the distribution; whateverwe do to 
these zeros , they will remain a peak in our distrÏ­

bution. Non-parametric approaches wil1 fare little 
better, as these values will all be assigned the 

normally (SO/-) distributed and (b) 
strongly skewed (CI-) var阻刨出
Da田 from Lovett et 0/. (2000) 

same (tied) rank. In this situa­
tion , our only suggestion is 
that your data reflect two dif-

Homogeneity ofvariances 
Tests ofhypotheses in linear rnodels assume that 
the variance in the response variable is the same 
at each level , or combination oflevels , ofthe pre 
dictorvariables. This is a more important assun1p 
tion than normality although the analyses are 
rnore robust if san1ple sizes are equal. If the 
response variable has a nonnal distribution, then 
unequal variances will probably be due to a few 
unusual values , especially if sample sizes are 
small. Ifthe response variable has a lognormal or 
Poisson distribution, then we would expect a rela 
tionship between the mean (expected or predicted 
values 仕om the linear model) and unequal vari 
ances are related to the underlying distribution 
Transformations that improve normality will also 
usual1y improve homogeneity ofvariances 

τhere are formal tests 且br variance homogen­
eity, such as an F-ratio test before a t test. Our 
reluctance to recommend such tests has already 
been discussed in Chapter 3 and also applies to 
the use of Cochran's , Bartlett's or Levene's tests 
b出re an ANOVA model (Chapter 8). Less 岛rn1al ，

but more useful, checks include side-by-side box­
plots for multiple grollps , which allow a check of 
homogeneity of spread of samples (Figure 4.3 , 

Figure 4.5). Note that plots of residuals from the 
model against predicted values are also valuable 
exploratory checks (see Chapters 5 and 8). 
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Linearity 
Parametric correlation and linear regression 
analyses are based on straight-line relationships 
between variablesη1e simplest way of checking 
whether your data are likely to meet this assump­
tion is to examine a scatterplot of the two vari­
ables. or a SPLOM for more than two variables 
Figure 5.17(a) iIlustrates how a scatterplot was 
able to show a nonlinear relationship between 
number of species of invertebrates and area of 
mussel c1umps on a rocky shore. Smoothing 且1nc­
tions through the data can also reveal nonlinear 
relationships. We will discuss diagnostics for 
detecting nonlinearity 臼rther in Chapter 5 

Independence 
ηlis assumption basically implies that all the 
obse凹ations should be independent of each 
other. both within and between groups.τl1e most 
common situation where this assumption is not 
met is when data are recorded in a time sequence 
For experimental designs , there are modifications 
of standard analyses of variance when the same 
experimental unit is observed under di丘erent
treatments or times (Chapters 10 and 11). We will 
discU5S independence in more detail for each type 
of analysis in later chapters 

4.3 I Transforming data 

We indicated in the previous section that transfor­
mation of data to a di岱rent scale of measure­
ment can be a solution to distributional 
assumptio田， as well as related problems with var­
iance homogeneity and linearity. In this section, 

we will elaborate on the nature and application of 
data transformations 

τl1e just国cation 且or transforming data to dif­
ferent scales before data analysis is based , at least 
in part, on the appreciation that the scales of 
measurement we use are often arbitrary. For 
example , many measurements we take are based 
on a decimal system. This is probably related 臼
the number of digits we have on our hands: char­
acters 仕om the Simpsons would probably 
measure everything in llnits ofbase eight! Sokal & 

Rohlf (1995) point out that Iinear (arithmetic) 

scale of measurement we commonly use can be 
viewed in the same way. For example , we might 
measure the length of an object in centimeters 
but we could just as easily measure the length in 
log units , such as log centimeters. In fac t, we 
could do so directly just by altering the scale on 
our measuring device. like using a slide ruler 
instead of a normallinear ruler 

Surprisingly. trans岛rmations are quite 
common 面br measurements we encounter in 
everyday Ii企 Sometimes ， these transformations 
simply change the zero value, i.e. adding a con­
stant. Slightly more complex transformations 
may change the zero value but also rescale the 
measurements by a constant value , e.g. the 
change in temperature units 丘'Qm Fahrenheit to 
Celsius. Such transformations are linear. in that 
the relationship between the original variable 
and the transformed variable is a perfect straight 
line. Statistical tests of null hypotheses will be 
identical , in most cases , for the untransformed 
and the trans岛rmed data 

More commonly in data analysis , particularly 
in biology. are transformations that change the 
data in a nonlinear fashion. The most common 
transformation is the log transformation , where 
the transformed data are simply the logs (to any 
base) ofthe original data. The log transformation. 
while nonlinear. is monotonic. i.e. the order of 
data values after transformation is the same as 
before. A log-transformed scale is often the 
default scale for commonly used measurements 
Forεxample. pH is simply the log ofthe concentra. 
tion ofH+ ions , and most cameras measure aper­
ture as fstops , with each increase in f 
representing a halving of the amount of Iight 
reaching the film , i.e. a log2 scale. 

τhere ar巳 at least five aims of data trans岛rma­

tions for statistical analyses , especially for linear 
models 

• to make the data and the model error terms 
closer to a normal distribution (i.e. to make the 
distribution ofthe data symmetrical). 

• to reduce any relationship between the mean 
and the variance (i 巳 to improve homogenei可
of variances)，。仕en as a result of improving 
normali叨，
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• to reduce the influence of outliers, especially 
when they are at one end of a distribution , 

• to improve linearity in regression analyses, 

and 
• to make effects that are multiplicative on the 

raw scale additive on a transformed scale. i.e 
to reduce the size of interaction effects 
(Chapters 6 and 9) 
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10 

The most common use of transformations in 
biology is to help the data meet the distributional 
and variance assumptions required for linear 
models. Emerson (1991). Sokal & Rohlf (1995) and 
Tabachnick & Fidell (1996) provide excellent 
descriptions and justification of transformations. 
These authors are reassuring to those who are 
uncomfortable about the idea of transforming 
吐，eir data. feeling that they are "fiddling" the 
data to increase the chance of getting a significant 
result. A decision to transform. however. is always 
madebe岛re the analysis is done 

Remember that after any trans岛rmation， you 
must re-checkyour data to ensure the transforma­
tion improved the distribution of the data (or at 
least didn't make it any worse!). Sometim白.Iogor
square root transformations can skew data just as 
seve四Iy in the opposite direction and produce 
new outliers! 

A transformation is really changing your 
response variable and therefore your formal 
null hypothesis. You might hypothesize that 
growth of plants varies with dens町. and formal 
ize that as the Ho that the mean growth of plants 
at high density equals the mean grow由 at

low densi俘 If you are forced to log.transform 

(c) Fourth Root 

TRAN5FORMING DATA 

Distribution of counts 

一。，flimpe臼 in quadrats at Point 
Nepean: (a) untransformed (raw), 

(b) square root transformed, and (c) 
fourth root transforrned. (M Keough 
& G. Quinn. unpublished da国)

your data. the null hypothesis 
becomes "mean log-growth 
does not vary with densi旷\

4or you m1ght say thatm the 
first case , growth is defined as 
mg ofweight gained. whereas 

after log.transforming. growth is the log.mg 
weight gained 

4.3.1 Transformations and distributional 
assumptlons 

τhe most common 可pe oftrans且brmation useful 
for biological data (especially counts or measure 
ments) is the power transformation (Emerson 
1991. Neter et al. 1996). which transforms Y to Yl'. 

where p is greater than zero. For data with right 
skew. the square root (飞/) transformation, where 
p ~ 0.5. is applicable. particularly for data that are 
counts (Poisson distributed) and the variance is 
related to the mean. Cube roots (p 二 0.33). fourth 
roots (p ~ 0.25). etc.. will be increasingly effective 
for data that are increasingly skewed; fourth root 
transformations are commonly used for abun 
dance data in ecologywhen there are lot5 ofzeros 
and a few large values (Figure 4.8). Forvery skewed 
data. a reciprocal transformation can help, 

although interpretation is a little di日lcUlt

because then order ofvalues is reversed 
Transforming data to logarithms (the base is 

irrelevant although base 10 logs are more familiar 
to readers) will also make positively skewed distri 
butions more symmetrical (Keene 1995; Figure 
4.9). especially when the mean is related to the 
standard deviation. Such a distribution is termed 
lognormal because it can be made normal by log 
transforming the values. Use log (Y + c) where c is 
an appropriate constant if there are zeros in the 
data set because you can't take the log of zero 
Some people use the smallest possible value for 
their variable as a constant. others use an arbi­
trarily small number. such as 0.001 or. most 

65 
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Frequency distribution (a) (b) 

I and box plo臼 for concentrations of ~本 ~→ '非 c

CI- for 39 sites from forested 12 

If.… 1 Mouncains in New York State: 
(a) ur町an巾rmed and 8 
(b) log

lO
-trans(ormed (da国 from

Lo...ett et 0/. 2000) 
10寸 I I I 6 

口istribution of 
percentage cover of the alga 
Hormosìro bonksii in quadra巳 at

Point Nepean: (a) untransformed 
(raw) and (b) arcsin transformed. (M 
Keough & G. Quinn, unpublished I 10 
data.) 
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5 

commonly, 1, Berry (1987) 
pointed out that different 0 
values of c can produce differ- 0 20 40 61] 

ent results in ANOVA tests and % CQver 
recommended using a value of 
c that makes the distribution of the residuals as 
symmetrical as possible (based on skewness and 
kurtosis ofthe residual啡。

If skewness is actually negative , i.e. the distri­
bution has a long left ta丑， Tabachnick & Fidell 
(1996) suggested reflecting the variable before 
transforming. Reflection simply involves creating 
a constant by adding one to the largest value i口

th巳 sample and then subtracting each observation 
仕om this constan t 

These transformations can be considered part 
ofthe Box-Cox family oftransfonnations: 

Y^-1 
-À- whenλ刊

log(ηwhen λ=0 

Whenλ=1，飞lVe have no change to the distribu­
tion, whenλ= 0.5 we have the square root trans­
formation , and whenλ=-1 we have the 
reciprocal transformation, etc. (Keene 1995, Sokal 

80 100 0.5 1.0 1.5 

% CQver (ar臼in)

(4 ,1) 

& Rohlf 1995) , The Box-Cox family of transforma­
tions can also be used to fìnd the best transforma­
tion. in terms of normality and homogeneity of 
variance, by an iterative process that selects a 
value of λthat maximizes a log-likelihood func­
tion (Sokal & Rohlf 1995) 

When data are percentages or proportions , 

they are bounded at 0% and 100%. Power trans且or­
mations don't work very well for these data 
because they change each end ofthe dist口bution
dif岳rently (Emerson 1991). One common 
approach is to use the angular transformation , 

spec诅cally the arcsin transformation. With the 
data expressed as proportions , then transform Y 
to sin- 1(\/η ， and the result is shown in Figure 
4.10. It is most effective ifY is close to zero or one , 

and has little effect on mid-range proportions 
Fina11y, we should mention the rank transfor. 

mation , which converts the observations to ranks , 

as described in Chapter 3 for non-paramet口c te5ts 
The rank transformation is dif:岳rent 仕om the 

(4.2) 
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other tran5formations discussed here because it is 
bounded by one and n, where n is the sample size. 
This is an extreme transformation , as it results in 
equal dif岳rences (one unit, except for ties) 
between every pair of observations in this ranked 
set, regardless of their absolute difference. It 
therefore resul ts in the greatest loss of informa­
tion of a11 the monotonic transformations. 

For common linear models (regressions and 
ANOVAs), transformations will 0丘en lmprove nor­
mality and homogeneity ofvariances and reduce 
the influence of out1iers. If unequal variances and 
out1iers are a result of non-normality (e.g. skewed 
dist口butions) ， as is often the case with biological 
data, then transformation (to log or square root 
for skewed data) will improve all three at once 

4.3,2 Transformations and linearity 
Transformations can also be used to improve line­
arity of relationships between two variables and 
thus make linear regression models more appr任
priate. For example, allometric relationships with 
body size have a better linear fit after one or both 
variables are log-trans岛rmed. Note that nonlin­
ear relationships might be better investigated 
with a nonlinear model, especially one that has a 
strong theoretical j usti直cation

4 , 3.3 Transformations and additivity 
Transformations also affect the way we measure 
effects in linear models. For example , let's say we 
were measuring the effect of an experimental 
treatment compared to a control at two different 
times. If the means of our control groups are dif­
ferent at each time , how we measure the effect of 
the treatment is important. Some very artificial 
data are provided in Table 4 ,1 to illustrate the 
point. At Time 1, the treatment changes the mean 
value of our response variable 仕om 10 to 5 units , a 
decrease of 5 units. At Time 2 the change is 仕om50
to 25 units, a change of 25 units. On the raw scale 
ofmeasurement. the effects ofthe treatments are 
verγdifi坠rent， but in percentage terms , the effects 
are actua11y identical with both showing a 50% 
reduction. Biologically, which is the most mean­
ingful measure of effect, a change in raw scale or a 
change in percen tage scale? In many cases , the per­
centage change might be more biologically rele­
Vant and we would want our analysis to conclude 

Table 4, 1 I Means缸 treatment and control 
groups for an experiment conducted at t阳 times

Artificial data and arbitrary units used 

Untransformed 

Time 1 Time2 

Log 
transformed 

Time 1 Time2 

4 
5让 IL

2 
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15 t- Iì 15 

Control 10 
Treatment 5 

50 
25 

1.000 1, 699 
0.699 1 .3 9 日

that the treatment effects are the same at the two 
times. Transforming the data to a log scale 
achieves this (fable 4 ,1) , 

Interpretation of interaction terms in more 
complex linear models (Chapter 9) can also be 
affected by the scale on which data are measured 
Transforming data to reduce interactions may be 
use且11 ifyou are only interested in main effects or 
you are using a model that assumes no interaction 
(e ,g , some randomized blocks models; Chapter 10) 
Log-transformed data may better reflect the 
underlying nature and interpretation of an inter­
actlOn term. 

4 .4 I Standardizations 

Another change we can make to the values of our 
variable is to standardize them in relation to each 
other. Ifwe are inc1uding two or more variables in 
ananalys凹， such as a regression analysis or a more 
complex multivariate analysis , then converting 
a11 the variables to a similar scale is often impor­
tant before they are inc1uded in the analysis. A 
number of different standardizatìons are pos­
sible. Centering a variable simply changes the var­
iable so it has a mean of zero 

yó=yó-ÿ (4 .3) 

币li5 is sometimes called translation (Legendre & 

Legendre 1998) 
Variables can also be altered 50 they range 

仕om zero (minimum) to one (maximum) 
Legendre & Legendre (1998) describe two ways of 
achieving this: 

且
…

d 
(4 ,4) 





酬
川
护
川11川

70 GRAPHICAL EXPLORATION OF DATA 

The second situation in which censored data 
are common is time-to•event, survival or 也ilure­

time analysis (Fox 1993. Lindsey & Ryan 1998). In 
these studies , sampling or experinlental units are 
observed at regular intervals and we usually only 
know that an event occurred (e.g. response of 
patients in a clinical trial , flowering of plants or 
germination of seeds , etc.) after the last recording 
These data are nearly always right censored but 
since the observation is actually somewhere in a 
time lnte凹al， the phrase interval-censored is 
often used. Sometimes Dur variable of illterest 
ffiight be the time between two events occurring, 

e.g. the 且r5t introduction of an exotic species to a 
system and the fìrst 1055 of a native species. Both 
events will often be interval-censored , i.e. we only 
know when each occurred within an interval , and 
such data are termed doubly censored. Ooubly 
censored data are more common in medicine and 
clinical trials than in general biological research 
Unfortunately, the area of survival analysis is 
beyond the scope ofthis book (but see Andersen & 

Keiding 1996. Fox 1993) 
τ'he methods for dealing with censored data 

are related to those for dealing with missing data. 
We will only provide a brief mention here and 
recommend Akritas et a1. (1994) for a good intro. 
duction to the literature for left-censored environ­
mental data 

Estimation of皿ean and variance 
Three methods have been proposed for dealing 
-with censored , especiallyleft-censored , data when 
the aim is to estimate parameters of a single pop­
ulation 

The first is simple substitution, where the 
detection lim此， half the detection limit (as used 
by Lovett et a1. 2000 for their ammonium data) 01' 

zero are substituted for the censored data. A less 
common alternative is to assunle a distribution 
(e.g. normal or uniform) 伽 the values below the 
detection limit and substitute random data 企'Qm

the distribution. Parameters are estimated from 
the complete data s巳t， although these estimates 
will be biased and the extent of the bias depends 
on the actual values ofthe censored observations. 
which, of course , we do not know. As -with missing 
data , simple substitution is not recommended 

Parametric methods assume a normal 

distribution and use maximum likelihood 
methods to estimate parameters , based primarily 
on the non-cen5ored data but incorporating the 
size of the censored and non-censored compo­
nents of the sample (Newman et a1. 1989). The ML 
estimates can also be used to in自11 the censored 
data (Akritas et a1. 1994). These ML estimates are 
biased but usually more pre口se than other 
methods; restricted ML (REML; see Chapter 8) 
methods are also available that reduce the bias 
There are more robust parametric methods , often 
based on order statistics (Chapter 2) where the cen 
sored values are infilled 仕om predicted values 
from a regression through a normal or lognormal 
probability plot 且tted to the ordered data. These 
methods are termed normal or lognormal prob 
ability regressions (.曲itas et a1. 1994) 01' regres 
sions on expected order statistics (Newman et a! 
1989). We have to assume that the censored values 
are extensions of the same distribution as the 
uncensored values. The simulations ofNewman et 
a1. (1989) indica ted tha t ML estima tes are best when 
distributional assumptions are met, otherwise the 
probability regression method should be used. 

Comparing two or more populations 
There is some consensus in the literature th<1t 
non-parametric, rank-based, tests are most appro­
priate for hypothesis testing with censored data 
Millar咀& Oeveral (1988) compared twelve rank 
tests for comparing two populations based on 
sample data with single censoring and multiple 
censoring (the detection limit varies between 
groups). For tests like the Mann-Whitney­
Wilcoxon (Chapter 町， values below the detection 
limit are given the same tied rank. Millard & 

Oeverel (1988) recommended score tests (linear 
rank tests) for comparing two populations , 

whereas Akritas et a1. (1994) preferred a form of 
the robust τheil-Sen regression (Sprent 1993; see 
also Chapter 5) in which the predictor variable 
defines the two groups. Fornlore than two groups , 

multiple pair飞.v:ise tests , with a suitable correction 
for multiple testing (Chapter 3). are probably the 
simplest approach. 

Akritas et al. (1994) also describe regression 
methods 岛r censored data. For survival data, pro 
portional hazards models can be used. For left­
censored data, various non-parametric regression 
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analyses (Chapter 5) are possible. with a form of 
theτheil-Sen method being the simplest 

4.7 I General issues and hints for 

analysis 

4.7.1 General issues 
• Graphical analysis of the data should be the 

first step mεvery analysis. Besides aliowing 
you to assess the assumptions ofyour planned 
analysis , it al10ws you to get familiar with your 
data 

• Many current statistical packages emphasize 
exploratory data analysis , and make it easy to 
produce boxplots, residual plots. etc 

• Initial graphical analysis is also veryvaluable 
for identi命ing outliers, which can have a great 
influence on your analyses. 

• Transformations are routinely used to improve 
the fit ofbiological data to the a臼umptions of 
the planned statistical analyses. especially 
linear models 

• Data trans岛rmations should be monotonic, 50 
that the order ofthe observations for a 
variable does not change 


