J Chapter 3

Hypothesis testing

3.1 | Statistical hypothesis testing

In Chapter 2, we discussed one component of stat-
istical inference, estimating population parame-
ters. We also introduced the philosophical and
statistical differences between frequentist and
Bayesian approaches to parameter estimation.
The other main component of inference, and one
that has dominated the application of statistics in
the biological sciences, is testing hypotheses
about those parameters. Much of the philosophi-
cal justification for the continued use of statistical
tests of hypotheses seems to be based on Popper’s
proposals for falsificationist tests of hypotheses
{Chapter 1). Although Jerzy Neyman, Egon
Pearson and Sir Ronald Fisher had developed their
approaches to statistical testing by the 1930s, it is
interesting to note that Fopper did not formally
consider statistical tests as a mechanism for fal-
sifying hypotheses (Mayo 1996). Hilborn & Mangel
(1997, pp. 15-16) stated that “Popper supplied the
philosophy and Fisher, Pearson, and colleagues
suppiied the statistics” but the link between
Popperian falsificationism and statistical tests of
hypotheses is still controversial, e.g. the contrast-
ing views of Mayo (1996} and Oakes (1986). We will
present a critique of statistical hypothesis tests,
and significance tests in particular, in Section 3.6.
The remainder of this section will provide an
overview of statistical tests of hypotheses.

3.1.1 Classical statistical hypothesis testing
Classical statistical hypothesis testing rests on two
basic concepts. First, we must state a statistical

null hypothesis (H,}, which is usually {though not
necessarily} an hypothesis of no difference or no
relationship between population parameters (e.g.
no difference between two population means). In
many cases, we use the term effect to describe a
difference between groups or experimental treat-
ments (or a non-zero regression slope, etc., so the
H, is usually an hypothesis of no effect. The philo-
sophical basis for the statistical null hypothesis,
at least in part, relates back to Popperian falsifica-
tionism, whereby science makes progress by
severely testing and falsifying hypotheses. The
implication is that rejection of the statistical H is
equivalent to falsifying it and therefore provides
support ("corroboration™) for the research hypoth-
esis as the only alternative (Underwood 1997). We
do not test the research hypothesis in this way
because it is rarely more exact than postulating
an effect, sometimes in a particular direction.
Fisher (1935) pointed out that the null hypothesis
is exact, e.g. a difference of zero, and is the result
we would expect from randomizing observations
to different experimental groups when there is no
effect of the experimental treatment {Mulaik et al.
1997). The philosophical justification for testing
the null hypothesis is still a controversial issue.
For example, Oakes (1986) argued that support for
the research hypothesis as a result of the null
being rejected is not true corroboration and statis-
tical tests, as currently practiced, have only super-
ficial philosophical respectability.

Second, we must choose a test statistic to test
the H,. A test statistic is a random variable and, as
such, can be described by a probability distribu-
tion. For example, a cominonly used test statistic
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L for testing hypotheses about population means is
- t, where:

t'zLJ"_Ii’“_) (3.1)
5

we introduced the t statistic and its probability
distribution in Chapters 1 and used it in Chapter
7 for determining confidence intervals for popula-
rion means. Test statistics like 1 have a number of
probability distributions {see Figure 1.2}, called
sampling distributions, one for each possible
degrees of freedom (n— 1). These sampling distri-
putions represent the probability distributions of
t based on repeated random sampling from popu-
lations when the H is true and are sometimes
called central distributions. Probabilities asso-
ciated with particular ranges of values of test sta-
tistics are tabled in most statistics textbooks. Note
that test statistics are continuous random vari-
ables, so we cannot define the probability of a
single tvalue, for example. We can only talk about
the probability that t is greater (or less than) a
certain value or that ¢ falls in the range between
two values,

Before we look at the practical application of
statistical tests, some consideration of history is
warranted. The early development of statistical
hypothesis testing was led primarily by Sir Ronald
Fisher, whose influence on statistics was enor-
mous. Fisher {1954, 1956) gave us null hypothesis
or significance testing in statistics with the follow-
ing methodology (Huberty 1993),

1. Construct a null hypothesis (H ).

2. Choose a test statistic that measures devia-
tion from the H, and that has a known sampling
distribution (e.g. t statistic).

3. Collect the data by one or more random
samples from the population(s) and compare the
value of the test statistic from your sample{s) to
its sampling distribution.

4. Determine P value, the associated probabil-
ity of obtaining our sample value of the statistic,
or one more extreme, if H, is true

5. Reject H, if P is small; retain H otherwise.

Fisher proposed that we should report the
actual P value (e.g. P=0.042), which is a property
of the data and could be viewed as a “strength of
evidence™ measure against H, (Huberty 1994).

Fisher also introduced the idea of a conventional
probability (of obtaining our sample data or data
more extreme if H is true) for rejecting H; this is
called a significance level. He suggested a probabil-
ity of one in twenty (0.05 or 5%) as a convenient
level and the publication of tables of sampling dis-
tributions for various statistics reinforced this by
only including tail probabilities beyond these con-
ventional levels (eg. 005, 001, 0.001). Later,
however, Fisher {1956) recommended that fixed
significance levels (e.g. 0.05) were t00 restrictive
and argued that a researcher’s significance level
would depend on circumstances. Fisher also intro-
duced the idea of fiducial inference, although this
approach is rarely used in the biological sciences
- Mayo (1996) and Oakes (1986) provide dertails.
Jerzy Neyman and Egon Pearson (Neyman &
Pearson 1928, 1933) offered a related but slightly
different approach, which has sometimes been
called statistical hypothesis testing. Their
approach differed from Fisher’s in a number of
important ways (Oakes 1986, Royall 1997).

1. They argued that we should set a level of
significance (e.g. 0.05) in advance of the data col-
lection and stick with it - this is sometimes
called fixed level testing. The significance level is
interpreted as the proportion of times the H
would be wrongly rejected using this decision
rule if the experiment were repeated many times
and the H, was actually true. Under the
Neyman-Pearson scheme, the P value provides
no additional information beyond indicating
whether we should reject the H, at our specified
significance level (Oakes 1986). They emphasized
making a dichotomous decision about the H;
{reject or nor reject) and the possible errors asso-
ciated with that decision (see below) whereas
Fisher was more concerned with measuring evi-
dence against the H . Whether P values provide a
suitable measure of evidence is a matter of
debate (e.g. Royall 1997) that we will consider
further in Section 3.6.

2. Another major difference between the
Fisher and the Neyman-Pearson approaches was
that Neyman and Pearson explicitly incorporated
an alternative hypothesis (H,) into their scheme.
The H, is the alternative hypothesis that must be
true if the H, is false, eg. if the H, is that two
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population means are equal, then the H, is that
they are different by some amount. In contrast,
Fisher strongly opposed the idea of H, in
significance testing (Cohen 1990).

3. Neyman and Pearson developed the con-
cepts of Type I error {long-run probability of
falsely rejecting H,, which we denote «) and Type
II error (long-run probability of falsely not reject-
ing H,, which we denote §) and their a priori
significance level {e.g. a=0.05) was the long-run
probability of a Type I error (Gigerenzer 1993).
This led naturally to the concept of power (the
probability of correctly rejecting a false H ).
Fisher strongly disagreed with Neyman and
Pearson about the relevance of the two types of
error and even criticized Neyman and Pearson
for having no familiarity with practical applica-
tion of hypothesis testing in the natural sciences
{Oakes 1986)!

Statisticians have recently revisited the contro-
versy between the Fisher and Neyman-Pearson
approaches to hypothesis testing (Inman 1994,
lLehmann 1993, Mulaik et al. 1997, Royall 1997),
pointing cut their similarities as well as their dis-
agreements and the confusion in terminology.
Biologists, like psychologists (Gigerenzer 1993},
most commonly follow a hybrid approach, com-
bining aspects of both Fisherian inference and
Neyman-Pearsen decision-making to statistical
hypothesis testing.

1. Specify H,, H, and appropriate test statistic

2. Specify a priori significance level {(e.g. 0.05),
which is the long-run frequency of Type I errors
(«x) we are willing to accept.

3. Collect the data by one or more random
samples from the population(s) and calculate the
test statistic from our sample data.

4. Compare that value of the statistic to its
sampling distribution, assuming H,, true,

5. If the probability of obtaining this value or
one greater is less than the specified significance
level (e.g. 0.05), then conclude that the H, is false
and reject it (“significant” result),

6.1f the probability of obtaining this value is
greater than or equal to the specified
significance leve] (e.g. 0.05), then conclude there
is no evidence that the H is false and retain it
(“non-significant” result).

The Fisherian aspect of this hybrid approach is
that some biologists use P<0.05 (significant),
P<0.01 {very significant) and P < 0.001 (highly sig-
nificant) or present the actual P values to indicate
strength of evidence against the H,. Although the
latter has been strongly criticized by some in the
psychological literature (Shaver 1993), there is
some logical justification for providing P values
(Oakes 1986). For one thing, it allows readers to
use their own a prior significance levels to decide
whether or not to reject the H,.

To reiterate, interpretations from classical sta-
tistical tests are based on a longrun frequency
interpretation of probabilities, i.e. the probability
in a long run of identical “trials” or “experi-
ments”. This implies that we have one or more
clearly defined population(s} from which we are
sampling and for which inferences are to be made.
If there is no definable population from which
random samples are collected, the inferential
statistics discussed here are more difficult to
interpret since they are based on longrun fre-
quencies of cccurrence from repeated sampling.
Randomization tests (Section 3.3.2), which do not
require random sampling from a population, may
be more applicable.

3.1.2 Associated probability and Type |
error

Fisher and Neyman & Pearson both acknowledged
that probabilities from classicai statistical
hypothesis testing must be interpreted in the
longrun frequency sense, although the latter
were more dogmatic about it. The sampling distri-
bution of the test statistic (e.g. t} gives us the long-
run probabilities of different ranges of ¢ values
occurring if we sample repeatedly from a popula-
tion(s) in which the H is true. The P value, termed
the associated probability by Qakes (1986), then is
simply the long-run probability of obtaining our
sample test statistic or one motre extreme, if H is
true. Therefore, the P value can be expressed as
P(data[H,), the probability of observing our
sample data, or data more extreme, under
repeated identical experiments if the H is true.
This is not the same as the probability of H, being
true, given the observed data - P(H |data). As
Oakes (1986) has pointed out, there is rarely a sen-
sible longrun frequency interpretation for the
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probability that a particular hypothesis is true. If
we wish to know the probability of H, being true,
we need to tackle hypothesis testing from a
Bayesian perspective (Berger & Berry 1988; see
Section 3.7).

The P value is also sometimes misinterpreted
as the probability of the result of a specific analy-
sis being due to chance, e.g. a P value of <0.05
means that there is a less than 5% probability that
the result is due to chance. This is not strictly
correct (Shaver 1993); it is the probability of a
result occurring by chance in the long run if H, is
true, not the probability of any particular result
being due to chance.

Traditionally, biologists are correctly taught
that a non-significant result (not rejecting H))
does not indicate that H is true, as Fisher himself
stressed. In contrast, the Neyman-Pearson logic is
that H, and H, are the only alternatives and the
nonTejection of H, implies the acceptance of H,
(Gigerenzer 1993), a position apparently adopted
by some textbooks, e.g. Sokal & Rohlf (1995) refer
to the acceptance of H;, The Neyman-Pearson
approach is really about alternative courses of
actions based on the decision to accept or reject.
Accepting the H, does not imply its truth, just that
one would take the action that results from such
a decision.

Our view is that a statistically non-significant
result basically means we should suspend judge-
ment and we have no evidence to reject the H,.
The exception would be if we show that the power
of our test to detect a desired alternative hypothe-
sis was high, then we can conclude the true effect
is probably less than this specific effect size
(Chapter 7). Underwood (1990, 1999} has argued
that retention of the H, implies that the research
hypothesis and model on which it is based are fal-
sified (see Chapter 1). In this context, a statistically
non-significant result should initiate a process of
revising or even replacing the model and devising
new tests of the new model(s). The philosophical
basis for interpreting so-called ‘negative’ results
continues to be debated in the scientific literature
(e.g. see opinion articles by Allchin 1999, Hull
1999 and Ruse 1999 in Marine Ecology Progress
Series). '

The Type I error rate is the long-run probabil-
ity of rejecting the H, at our chosen significance

level, e.g. 0.05, if the H, is actually true in all the
repeated experiments or trials. A Type I error is
one of the two possible errors when we make a
decision about whether the H is likely to be true
or not under the Neyman—Pearson protocol. We
will consider these errors further in Section 3.2.

3.1.3 Hypothesis tests for a single
population
We will illustrate testing an H;, with the simplest
type of test, the single-parameter t test. We dem-
onstrated the importance of the t distribution for
determining confidence intervals in Chapter 2. It
can also be used for testing hypotheses about
single population parameters or about the differ-
ence between two population parameters if
certain assumptions about the variable hold. Here
we will look at the first type of hypothesis, e.g.
does the population mean equal zero? The value
of the parameter specified in the H, doesn’t have
to be zero, particularly when the parameter is a
mean, e.g. testing an H that the mean size of an
organism is zero makes little biclogical sense.
Sometimes testing an H, that the mean equals
zero is relevant, e.g. the mean change from before
to after a treatment equals zero, and testing
whether other parameters equal zero (e.g. regres-
sion coefficients, variance components, etc.) is
very important. We will consider these parame-
ters in later chapters.
The general form of the f statistic is:

St— 8
t=
S

(3.2)

where St is the value of the statistic from our
sample, 6 is the population value against which
the sample statistic is to be tested (as specified in
the H )and S is the estimated standard error of the
sample statistic. We will go through an example of
a statistical test using a one-sample I test.

1. Specify the H; (e.g. u =0} and H, (e.g. u70}.

2. Take a random sample from a clearly
defined population.

3. Calculate t=(y— 0),(5)_, from the sample,
where s is the estimated standard error of the
sample mean. Note that if H, is true, we would
expect £ to be close to zero, i.e. when we sample
from a population with a mean of zero, most
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Probability (a)
distributions of t for (a) two-tailed
and (b) one-tailed tests, showing

critical t values {t_). P

samples will have means close

to zero. Sample means
further from zero are less
likely to occur if H is true.
The probability of getting a {b)
sample mean a long way from

zero, and therefore a large t,

either positive or negative, is P(t)
less if the H is true. Large ¢

values are possible if H is

true — they are just unlikely.

4. Compare t with the
sampling distribution of t at
a=0.05 (or 0.01 or whatever
significance level you choose a priori) with n—1
df. Look at the ¢ distribution in Figure 3.1.
Values of t greater than +t_or less than —t_have
a less than 0.05 chance of occurring from this t
distribution, which is the probability
distribution of t when H, is true. This value {t)
is sometimes called the critical value. If the
probability (P value) of obtaining our sample t
value or one larger is less than 0.05 (our aj, then
we reject the H,. Because we can reject H; in
either direction, if u is greater than zero or if ¢
is less than zero, then large values of the test
statistic at either end of the sampling
distribution will result in rejection of H; {Figure
3.1). This is termed a two-tailed test (see Section
3.1.4). To do a test with &= 0.05, then we reject
H, if our t value falls in the regions where P=
0.025 at each end of the sampling distribution
{0.025 +0.025 = 0.05). If the probability {P value)
of obtaining our t value or one larger is =0.05,
then we do not reject the H,

As mentioned earlier, the sampling distribu-
tion of the t statistic when the H, is true is also
called the central t distribution. The probabilities
for the t distribution for different degrees of
freedom are tabled in most textbooks (usually for
P=0.05, 0.01 and sometimes 0.001}. In addition, ¢
distributions are programmed intce statistical

software. When using statistical tables, our value
of tis simply compared to the critical t value at e =
0.05. Larger t values always have a smaller P value
(probability of this or a larger value occurring if H,
is true) so if the statistic is larger than the critical
value at 0.05, then H, is rejected. Statistical soft-
ware usually gives actual P values for statistical
tests, making the use of tables unnecessary.

We could theoretically use the sampling distri-
bution of the sample mean {(which would be a
normal distribution) to test our H,,. However, there
are an infinite number of possible combinations
of mean and variance, so in practice such sam-
pling distributions are not calculated. Instead, we
convert the sample mean to a ¢ value (subtracting
. specified in H; and dividing by the standard
error of the mean), whose central distribution is
well defined.

Finally, it is important to note the relationship
between the hypothesis test illustrated here and
confidence intervals described in Chapter 2. The
H, that u equals zero is tested using a t distribu-
tion; a confidence interval for p is also con-
structed using the same t distribution {based on n
—1 df). Not surprisingly then, a test of this H,
with a 0.05 significance level is the equivalent of
seeing whether the 95% (0.95) confidence interval
for  overlaps zero; if it does, we have no evidence
to reject H,.
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3.1.4 One- and two-tailed tests
o most cases in biclogy, the H, is one of no effect
{e.g. no difference between two means}and the H,
{the alternative hypothesis) can be in either direc-
tion; the H is rej ected if one mean is bigger than
the other mean or vice versa. This is termed a two-
tailed test because large values of the test statistic
at either end of the sampling distribution will
result in rejection of H, (Figure 3.1). The H thata
parameter equals a specific value is sometimes
called a simple hypothesis or a point hypothesis
(Barnett 1999). To do a test with «=0.05, then we
use critical values of the test statistic at a=0.025
at each end of the sampling distribution.
Sometimes, our H; is more specific than just no
difference. We might only be interested in
whether one mean is bigger than the other mean
but not the other way. For example, we might
expect increased density of organisms to induce
competition and reduce their growth rate, and we
can think of no mechanism whereby the organ-
isms at the higher density would increase their
growth. Here our I is that the population mean
growth rate for increased density is greater than
or equal to the population mean growth rate for
lower density. Our H, is, therefore, that the popu-
lation mean growth rate for increased density is
less than the population mean growth rate for
lower density. This is a one-tailed test, the H  being
directional or composite (Barnett 1999), because
only large values of the test statistic at one end of
the sampling distribution will result in rejection
of the H, (Figure 3.1). To do a test with a=0.05,
then we use critical values of the test statistic at
a=0.05 at one end of the sampling distribution.
We should test one-tailed hypotheses with care
because we are obliged to ignore large differences
in the other direction, no matter how tempting it
may be to deal with them. For example, if we
expect increased phosphorous (P) to increase
plant growth compared to controls (C) with no
added phosphorous, we might perform a one-
tailed 1 test (Hy: pp < pes Hyo ™ p ). However, we
cannot draw any formal conclusions if growth
rate is much less when phosphorous is added,
only that it is a non-significant result and we have
no evidence to reject the Hy. Is this unrealistic,
expecting a biologist 1o ignore what might be an
important effect just because it was in the oppo-

site direction to that expected? This might seem
like an argument against one-tailed tests, avoid-
ing the problem by never ruling out interest in
effects in both directions and always using two-
tailed tests. Royall (1997) suggested that research-
ers who choose one-tailed tests should be trusted
to use them correctly, although he used the prob-
lems associated with the one-tail versus two-tail
choice as one of his arguments against statistical
hypothesis testing and P values more generally. An
example of cne-tailed tests comes from Todd &
Keough (1994), who were interested in whether
microbial films that develop on marine hard sub-
strata act as cues inducing invertebrate larvae to
settle. Because they expected these films to be a
positive cue, they were willing to focus on changes
in settlement in one direction only. They then
ignored differencesin the opposite direction from
their a priori one-tailed hypothesis.

Most statistical tables either provide critical
values for both one- and two-tailed tests but some
just have either one- or two-tailed critical values
depending on the statistic, so make sure you lock
up the correct P value if you must use tables.
Statistical software usually produces two-tailed P
values so you should compare the P value to
a=0.10 for a cne-tailed test at 0.05.

3.1.5 Hypotheses for two populations
These are tests of null hypotheses about the equiv-
alent parameter in two populations. These tests
can be one- or two-tailed although testing a point
null hypothesis with a two-tailed test is more
common in practice, i.e. the parameter is the same
in the two populations. If we have a random sample
from each of two independent populations, i.e. the
populations represent different collections of
observations (i.e. sampling or experimental units),
then to test the H, that u, =g, (comparing two
independent population means):

p=21" 2 (3.3)

=152+ (n,—1D)s2{1 1
o A mmnstrma-nst(1 1)
im0 nytn,—2 n, 1,

Equation 3.4 is the standard error of the differ-
ence between the two means. This is just like the
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one-parameter t test except the single sample sta-
tistic is replaced by the difference between two
sample statistics, the population parameter spec-
ified in the H  is replaced by the difference
between the parameters of the two populations
specified in the H, and the standard error of the
statistic is replaced by the standard error of the
difference between two statistics:

f— (F1—=72) — (s — o) (3.5)

55,2

We follow the steps in Section 3.1.1 and compare t
to the t distribution with n_ +n, — 2 dfin the usual
manner. This H, can also be tested with an ANOVA
Fratio test {Chapter 8).

We will illustrate tests of hypotheses about two
populations with two examples. Ward & Quinn
{1988) studied aspects of the ecology of the inter-
tidal predatory gastropod Lepsiella vinosa on a
rocky shore in southeastern Australia (Box 3.1). L.
vinosa occurred in two distinct zones on this
shore: a high-shore zone dominated by small
grazing gastropods Littorina spp. and a mid-shore
zone dominated by beds of the mussels
Xenpstrobus pulex and Brachidontes rostratus. Both
gastropods and mussels are eaten by L vinesa.
Other data indicated that rates of energy con-
sumption by L. vinosa were much greater in the
mussel zone. Ward & Quinn (1988) were interested
in whether there were any differences in fecun-
dity of L. vinosa. especially the number of eggs per
capsule, between the zones, From June to
September 1982, they collected any egg capsules
they could find in each zone and recorded the
number of eggs per capsule. There were 37 cap-
sules recorded from the littorinid zone and 42
from the mussel zone. The H, was that there is no
difference between the zones in the mean
number of eggs per capsule. This is an indepen-
dent comparison because the egg capsules were
independent between the zones.

Furness & Bryant (1996) studied energy
budgets of breeding northern fulmars (Fulmarus
glacialis) in Shetland {Box 3.2). As part of their
study, they recorded various characteristics of
individually labeled male and female fulmars. We
will focus on differences between sexes in meta-
bolic rate. There were eight males and six females
labeled. The H, was that there is no difference

between the sexes in the mean metabolic rate of
fulmars. This is an independent comparison
because individual fulmars can only be either
male or female.

If we have a random sample from a population
and we have recorded two (paired) variables from
each observation, then we have what are com-
monly called paired samples, e.g. observations at
two times. To test whether the population mean
difference between the two sets of observations
equals zero, we basically use a test for a single pop-
ulation (Section 3.1.3) to test the H that g, =0:

(3-6)

:\l“?lg-ll

where d is the mean of the pairwise differences
and s; is the standard error of the pairwise differ-
ences, We compare ¢ with a t distribution with n—
1 dfin the usual manner. This H, can also be tested
with a two factor unreplicated ANOVA F-ratio test
{Chapter 10).

For example, Eigar et al. (1996) studied the
effect of lighting on the web structure of an orb-
spinning spider (Box 3.3). They set up wooden
frames with two different light regimes (con-
trolled by black or white mosquito netting}, light
and dim. A total of 17 orb spiders were allowed to
spin their webs in both a light frame and a dim
frame, with six days’ “rest” between trials for each
spider, and the vertical and horizontal diameter
of each web was measured. Whether each spider
was allocated to alight or dim frame first was ran-
domized. The null hypotheses were that the two
variables (vertical diameter and horizontal diam-
eter of the orb web) were the same in dim and
light conditions. Elgar et al. (1996) correctly
treated this as a paired comparison because the
same spider spun her web in a light frame and a
dark frame.

We can also test whether the variances of two
populations are the same. Recall from Chapter 2
that variances are distributed as chi-squares and
the ratio of two chi-square distributions is an Fdis-
tribution, another probability distribution that is
well defined. To test the H, that o, = ¢,* (compar-
ing two population variances), we calculate an F-
ratio statistic:

F=21 (3.7)
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‘Box 3.1 | Fecundity of predatory gastropods

Hward & Quinn (1988} collected 37 egg capsules of the intertidal predatory gastro-
iipo;j:f_epsieﬂa vinosa from the littorinid zone an a rocky intertidal shore and 42 cap-
“sules from the mussel zone. Other data indicated that rates of energy consumption
;:b'y:L- vinosa were much greater in the mussel zone so there was interest in differ-
‘ences in fecundity between the zones. The H, was that there is no difference
between the zones in the mean number of eggs per capsule. This is an indepen-
dent comparison because individual egg capsules can only be in either of the two
zones.

Standard  SEof  95% Clfor

Zone n Mean Median  Ranksum  deviation mean  mean
Littorinid 37 8.70 b 1007 203 .33 803-9.38
Mussel 42 1138 |1 2153 2.33 036 10.64-12.08

MNote that standard deviations {and therefore the variances) are similar and box-
plots (Figure 4.4) do not suggest any asymmetry so a parametric ¢ test is appropri-
ate.

Pooled variance test:

t=-539,cf=77.P<000I,

We would reject the H;, and conclude there was a statistically significant difference
in mean number of eggs per capsule between zones.
Effect size (difference between means) = —2.65 (5% Cl: —1.674 1o —3.635)
Separate variance test:

= —544,df =77, P<000I.

Note that the t values were almost identical and the degrees of freedom were the
same, not surprising since the variances were almost identical,

Although there was little justification for a non-parametric test, we also tested
the H, that there was no difference in a more general measure of location using
the Mann—Whitney—\Wilcoxon test.

U=304.00, ¥ approximation =721.99 with | df P<<0.001.

Again we would reject the Hy, In this example, the parametric pooled and separ-
ate variance t tests and non-parametric test all give P values <<0.001.

A randomization test was done to test the H, that there is no difference
between the mean number of eggs per capsute so that any possible allocation of
observations to the twa groups is egually likely.

Mean difference=—265, P<C0.00! (significant) for difference as or more
extreme than observed based on 10 000 randomizations.

where 5, is the larger sample variance and s,? is
the smaller sample variance. We compare this F-
ratio with an F distribution with n,—1 df for
numerator (sample onej and n,—1 df for denomi-
nator {sample two). We will consider Fratio tests
on variances in more detail in Chapters 5 onwards.

3.1.6 Parametric tests and their
assumptions

The t tests we have just described for testing null

hypotheses about population means are classified

as paramefric tests, where we can specify a prob-

ability distribution for the populations of the
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Box 3.2 | Metabolic rate of male and female fulmars

Furness & Bryant {1996) studied energy budgets of breeding northem fulmars
(Fulmarus glocialis) in Shetland. As part of their study, they recorded various char-
acteristics of individually labeled male and fermale fulmars. We will focus on differ-
ences between sexes in metabolic rate. There were eight males and six females
labeted. The H,; was that there is no difference between the sexes in the mean
metabolic rates of fulmars. This is an independent comparison because individual
fulmars can only be either male or female.

Standard St of 95% Cl for
Sex n Mean Median deviation  mean mean
Male 8 1563.78 157055 89437 31621 81606 —231149
Fermale 5 128552 122615 42096 171.86 84374172729

MNote that variances are very different although the boxplots (Figure 4.5) do not
suggest strong asymmetry. The small and unequal sampie sizes, in conjunction with
the unequal variances, indicate that a t test based on separate variances is more
appropriate.

Separate variance test:

t=077,df= 105, P=0457.

We would not reject the H,, and conclude there was no statistically significant dif-
ference in mean metabolic rate of fulmars between sexes.

The effect size (difference between means) =27826 (95% Cl: —518.804 to
1075.321.
MNote that the confidence interval on the mean difference includes zero, as expected
given the non-significant result from the test.

The very different variances would mazake us reluctant to use a rank-based non-
parametric test. Even a randomization test might be susceptible to unequal vari-

ance, although the results from such a test support the previous conclusion.
Mean difference = 27826, P=0.252 (not significant) for difference as or more
extreme than observed based an 10 000 randomizations.

variable from which our samples came, All statis-
tical tests have some assumptions (yes, even so-
called “non-parametric tests” - see Section 3.3.3)
and if these assumptions are not met, then the
test may not be reliable. Basically, violation of
these assumptions means that the test statistic
{e.g. ) may no longer be distributed as a t distribu-
tion, which then means that our Pvalues may not
be reliable. Although parametric tests have these
assumptions in theory, in practice these tests may
be robust to moderate violations of these assump-
tions, i.e. the test and the P values may still be reli-
able even if the assumptions are not met. We
will describe the assumptions of t tests here and

introduce ways of checking these assumptions,
although these methods are presented in more
detail in Chapter 4. The assumptions themselves
are also considered in more detail as assumptions
for linear models in Chapters 5 cnwards.

The first assumption is that the samples are
from normally distributed populations. There is
reasonable evidence from simulation studies
(Glass et al. 1972, Posten 1984) that significance
tests based on the t test are usually robust to viola-
tions of this assumption unless the distributions
are very non-symmetrical, e.g. skewed or multi-
modal. Checks for symmetry of distributions can
include dotplots (if n is large enough), boxplots and
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:Box 3.3 | Orb spider webs and light intensity

gElgar et al (1996) exposed 17 orb spiders sach to dim and light conditions and
%}‘-é__to'rded two aspects of web structure under each condition. The H s are that the
}two variables (vertical diameter and horizontal diameter of the orb web) were the
‘came in dlim and light conditions. Because the same spider spun her web in both
;|ight conditions, then this was a paired comparison. Boxplots of paired differences
‘for both variables suggested symmetrical distributions with no outliers, so a para-
{metric paired t test is apprapriate.

Horizontal diameter (cm):

Mean difference = 44.18, SE difference = 21 .49.
t=2.15di=16,P=0047 (significant).

So we would reject the H, and conclude that, for the population of fermale orb
spiders, there is a difference in the mean horizontal diameter of spider webs
_between light and dim conditions.

“‘Wilcoxon signed rank z= — | 84, P= 0066 (not significant), do not reject H, Note
the less powerful non-parametric test produced a different result,

Vertical diameter (crnj:

Mean difference = 20,59, SE difference = 21.32.
t=097,df= 16 F =0.249 (nat significant), do not reject H,,

So we would not reject the H; and conclude that, for the population of fermale orb
spiders, there is no difference in the mean vertical diameter of spider webs between
light and dim conditions.

Wilcoxon signed rank z = —0.78, P =0434 (not significant). In this case, the non-
parametric test produced the same conclusion as the ¢ test.

pplots (see Chapter 4). Transformations of the vari-
able to a different scale of measurement (Chapter
4] can often improve its normality. We do not rec-
ommend formal significance tests for normality
{e.g. Shapiro-Wilk test, Lilliefors test; see Sprent
1993) because, depending on the sample size, these
tests may reject the H of normality in situations
when the subsequent t test may be reliable.

The second assumption is that samples are
from populations with equal variances. This is a
more critical assumption although, again, the
usual t test is very robust to moderately unequal
variances if sample sizes are equal {Glass et al.
1972, Posten 1984). While much of the simulation
work relates to analysis of variance (ANOVA} prob-
lems (see Day & Quinn 1989, Wilcox et al. 1986,
Chapter 8), the results also hold for t tests, which
are eqguivalent to an ANOVA Fratio test on two
groups. For example, if n equals six and the ratio

of the two standard deviations is four or less, sim-
ulations show that the observed Type I error rate
for the t test is close to the specified rate (Coombs
et al. 1996). If sample sizes are very unequal, espe-
cially if the smaller sample has the larger vari-
ance, then Type I error rates may be much higher
than postulated significance level. If the larger
sample has the larger variance, then the rate of
Type Il errors will be high (Judd ¢t al. 1995, Coombs
et al. 1996). Coombs et al. {1996) illustrated this
with simulation data from Wilcox et al. (1986) that
showed that for sample sizes of 11 and 21, a four to
one ratio of standard deviations {largest standard
deviation associated with small sample size)
resulted in a Type [ error rate of nearly 0.16 for a
nominal & 0f0.05. Note that unequal variances are
often due to skewed distributions, so fixing the
non-normality problem will often make variances
more similar. Checks for this assumption include
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Statistical decisions

STATISTICAL CONCLUSION

and errors when testing nuil Reject H, Retain H,
hypotheses.
examining boxplots of each - Correct decision | - Type Il eror
Sample for similar Spl‘eads. We POPULATION ect Effect detected Effect not detected N

do not routinelyrecommenda  gTUATION
preliminary test of equal pop-

ulation variances using an F

ratio test (Section 3.1.5) for

three reasons.

« The F-ratic test might be more sensitive to non-
normality than the t test it is “protecting”.
Depending on sample size, an F-ratio test may
not detect variance differences that could
invalidate the following i test, or it might find
unequal variances (and hence recommend the
following analysis not be done), which would
not adversely affect the subsequent t test
(Markowski & Markowski 1990). This
dependence of the results of a statistical
hypothesis test on sample size is well known
and will be discussed further in Section 3.6.
Statistical hypothesis testing should be used
carefully, preferably in situations where power
and effect sizes have been considered; this is
rarely the case for exploratory checks of
assumptions.

The third assumption is that the observations are
sampled randomly from clearly defined popula-
tions. This is an assumption that must be consid-
ered at the design stage. If samples cannot be
sampled randomly from populations, then a more
general hypothesis about differences between
samples can be tested with a randomization test
(see Section 3.3.2).

These t tests are much more sensitive to
assumptions about normality and equal variances
if sample sizes are unequal, so for this reason
alone, it’s always a good idea to design studies
with equal sample sizes. On an historical note,
testing differences between means when the vari-
ances also differ has been a research area of long-
standing interest in statistics and is usually called
the Behrens-Fisher problem. Solutions to this
problem will be discussed in Section 3.3.1.

An additional issue with many statistical tests,
including parametric tests, is the presence of

No effect

Type | error Corract decision
Effect detected; No effect detected;
none exists none exists

outliers {Chapter 4). Qutliers are extreme values
in a sample very different from the rest of the
observations and can have strong effects on the
results of most statistical tests, in terms of both
Type 1 and Type II errors. Note that both paramet-
ric t tests and non-parametric tests based on ranks
{Section 3.3) are affected by outliers (Zimmerman
1994}, although rank-based tests are less sensitive
(Zimmerman & Zumbo 1993). Detection and treat-
ment of outliers is considered in Chapter 4.

3.2 | Decision errors

3.2.1 Type |l and Il errors

When we use the Neyman-Pearson protocol to
test an H,,, there are four possible outcomes based
on whether the H, was actually true (no effect) or
not {real effect) for the population (Figure 3.2). A
rejection of a I is usually termed a significant
result (statistically significant, not necessarily bio-
logically significant - see Box 3.4) and implies that
some alternative hypothesis (H,) is true. Clearly,
two of the outcomes result in the right statistical
decision being made; we correctly reject a false H,
or we correctly retain a true H;. What about the
two errors?

» AType I error is when we mistakenly reject a
correct H, (e.g. when we conclude from our
sample and a t test that the population
parameter is not equal to zero when in fact the
population parameter does equal zero) and is
denoted «. A Type I error can only occur when
H, is true.

» A Type Il error is when we mistakenly accept
an incorrect H, (e.g. when we conclude from
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Region where H; retained

Pt)

Type |l error

our sample and a t test that the population
parameter equals zero when in fact the
population parameter is different from zero).
Type II error rates are denoted by 5 and can
only occur when the H is false.

Both errors are the result of chance. Qur
random sample(s) may provide misleading infor-
mation about the population(s), especially if the
sample sizes are small. For example, two popula-
tions may have the same mean value but our
sample from one population may, by chance,
contain all large values and our sample from the
other population may, by chance, contain all
small values, resulting in a statistically significant
difference between means. Such a Type I error is
possible even if H, [u =p,) is true, it’s just
unlikely. Keep in mind the frequency interpreta-
tion of P values also applies to the interpretation
of error rates. The Type I and Type II error prob-
abilities do not necessarily apply to our specific
statistical test but represent the long-run prob-
ability of errors if we repeatedly sampled from the
same population(s) and did the test many times.

Examine Figure 3.3, which shows the probabil-
ity sampling distribution of t when the H_ is true
{left curve) and the probability sampling distribu-
tion of t when a particular H, is true (right curve).
Of course, we never know what this latter distribu-
tion looks like in practice because if H, is false, we
don’t know what the real H, is. For a particular df,
there will be a different distribution for each pos-
sible H, but only one sampling distribution for H,.
The critical value of t for = 0.05 is indicated. If H
is actually true, any t value greater than this criti-
cal value will lead to a rejection of H, and a Type
1 error. If H, is actually false and H, is true, any

Region where H, rejected

//////,,,

Type | error

Graphical
representation of Type | and Type ||
error probabilities, using a t test as
an example.

value equal to or smaller than
this critical value will lead to
non-rejection of H, and a
TFype Il error. Note thatifH_ is,
for example, no difference
between means, then H, is a
difference between means.
The bigger the difference, the further the t distri-
bution for H, will be to the right of the t distribu-
tion for H, and the less likely will be a Type II
eITor.

Traditionally, scientists have been most con-
cerned with Type I errors. This is probably
because statistically significant results imply fal-
sification of a null hypothesis and therefore
progress in science and maybe because we
wrongly equate statistical significance with bio-
logical significance (see Box 3.4). Therefore, we
protect ourselves {and our discipline) from false
significant results by using a conservative signifi-
cance level {e.g. 0.05); this means that we are con-
trolling our Type I error rate to 0.05 or 5%. If the
probability of obtaining our sample when the H;
is true is less than 0.05, then we reject that H,;
otherwise we don’t reject it. Why don’t we use an
even lower significance level to protect ourselves
from Type I errors even more? Mainly because for
most statistical tests, for a given sample size and
level of variation, lowering the Type I error rate
(the significance level) results in more Type Il
errors (imagine moving the vertical line to the
right in Figure 3.3) if it turns out that the H, is
true.

For some activities, especially environmental
monitoring and impact assessment and experi-
ments involving human heaith issues, Type II
errors may be of much greater importance than
Type 1. Consider a monitoring program, and the
consequences of the two kinds of errors. A Type [
error results in an erronecus claim of a significant
environmental change. In an ideal world, the
result would be a requirement by the relevant reg-
ulatory authority for some mitigation or cessa-
tion of the activity causing that change. The
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Box 3.4/ Biological versus statistical significance

it is important to distinguish between biclegical and statistical significance. As men-
tioned in Section 3.6.1,if we take largarand larger samples, we can detect even very
small differences. Whenever we  get a (statistically) significant result, we must still
decide whether the eflects that we observe are biologically meaningful For
example, we might measure 100 snails in each of two populations, and we would
almost certainly find that the two populations were different in size. However, if the
mean size differed by = 1%, we may strugale to explain the biological meaning of

auch a small difference.

What is biclogically significant? The answer has nothing to do with statistics, but
with our biological judgment, and the answer will vary with the questions being
answered. Smalt effects of experimental treatments may be biologically significant
when we are dealing with rates of gene flow, selection, or some physiological meas-

urements, because small differences can have impertant repercussions in popula-
tion genetics or organism health. For example, small changes in the concentration
of a toxin in body tissues may be enough to cause mortality. In contrast, small effects
may be less important for scological processes at farger spatial scales, especially

under field conditions.

it is important for biologists to think carefully about how large an effect has to
be before it is biclogically meaningful. In particula; setting biclogically important
effect sizes is crucial for ensuring that out statistical test has adequate power

“costs” would be purely financial - the cost of
(unnecessary) mitigation. A Type II error, on the
other hand, is a failure to detect a change that has
occurred. The verdict of “no significant impact”
results in continuation of harmful activities.
There is no added financial cost, but some time in
the future the environmental change will become
large enough to become apparent. The conse-
quence of this error is that significant environ-
mental degradation may have occurred or become
more widespread than if it had been detected
early, and mitigation or rehabilitation may be nec-
essary, perhaps at significant cost, A strong argu-
ment can therefore be made that for many
“applied” purposes, Type Il errors are more impaor-
tant than Type 1 errors. A similar argument
applies to other research areas. Underwood (1990,
1997), in describing the logical structure of
hypothesis testing, indicates very clearly how
Type 1I errors can misdirect research programs
completely.

The inverse of Type Il error is power, the prob-
ability of rejecting a false H,. We will consider
power in more detail as part of experimental
design in Chapter 7.

3.2.2 Asymmetry and scalable decision
criteria

One of the problems of fixing our significance
level &, even if we then use power analysis to deter-
mine sample sizes to minimize the probability of
Type Il errors, is that there 1s an implicit asymme-
try in the importance of H relative to H, (Barnett
1999, Oakes 1986). In many practical situations,
fixing & to 0.05 will make it difficult to reduce the
probability of Type Il errors to a comparable level,
unless sample sizes or effect sizes are very large.
The only solution fo this problem, while still
maintaining the structure of statistical tests and
errors associated with decisions, is to abandon
fixed level testing and use decision criteria that
provide a more sensible balance between Type [
and Type Il errors.

Mapstone {1995) has proposed one way of
incorporating flexible decision criteria in statisti-
cal hypothesis testing in ecology and environmen-
tal science. He suggested that we should set the
ratio of acceptable Type 1 and Type II errors a
priori, based on the relative costs of making each
kind of error, and the critical effect size is the
most crucial element. Keough & Mapstone {1995}
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have incorporated this idea into a framework for
designing environmental monitoring programs,
and included a worked example. Downes ef al.
(2001) have also advocated scalable decision crite-
ria for assessing environmental impact in fresh-
water ecosystems. The logic of considering costs of
making errors in statistical decision making is
much closer to the Bayesian approach to making
decisions, although Bayesians eschew the long-
run frequency view of probability (Section 3.7).

3.3 | Other testing methods

The statistical tests most commonly used by biol-
ogists, and the tests based on the ¢ distribution we
have just described, are known as parametric
tests. These tests make distributional assumptions
about the data, which for t tests are that the dis-
tributions of the populations from which the
samples came are normal. Most textbooks state
that parametric tests are robust to this assump-
tion, i.e. the sampling distribution of the t statis-
tic still follows the appropriate mathematical
distribution even if the variable has a non-normal
distribution. This means that the conclusions
from the test of H, are still reliable even if the
underlying distribution is not perfectly normal.
This robustness is limited, however, and the
assumpticn of normality (along with other
assumptions inherent in all statistical tests — see
Section 3.1.6) should always be checked before
doing a parametric analysis.

3.3.1 Robust parametric tests

A number of tests have been developed for the H,
that p¢, = u, which do not assume equal variances.
For example, there are approximate versions of
the ¢ test {called variously the Welch test,
Welch-Aspin test, the Satterthwaite-adjusted t
test, Behrens-Fisher test, separate variances t test),
which are available in most statistical software.
The most common version of this test recalculates
the df for the t test as (Hays 1994):

(5,0 V', + 5,/ V1,)? y
(s/ V1) (ny + 1) + (5,/ V1,2 (n, + 1)

(3.8)

This results in lower df (which may not be an
integer) and therefore a more conservative test.

Such a test is more reliable than the traditional ¢
test when variances are very unequal and/or
sample sizes are unequal.

Coombs et al. (1996) reviewed all the available
tests for comparing two population means when
variances may be unequal. They indicated that the
Welch test is suitable when the samples come
from normally distributed populations but rec-
ommended the Wilcox H test, based on M-
estimators and bootstrapped estimates of
variance (Chapter 2}, for skewed distributions.
Unfortunately, this test is not available in most
software.

Some commeon types of null hypotheses can
also be tested with non-parametric tests. Non-
parametric tests do not assume that the underly-
ing distribution of the population(s) from which
the samples came is normal. Before looking at
“classical” non-parametric tests based on ranks,
let's consider another type of statistical test called
a randomization test.

3.3.2 Randomization (permutation) tests
These tests resample or reshuffle the original data
many times to generate the sampling distribution
of a test statistic directly. Fisher {1935) first pro-
posed that this method might be suitable for
testing hypotheses but, without computers, could
only analyze very small data sets. To illustrate ran-
domization tests, we will revisit the example
described in Section 3.1.5 where Ward & Quinn
(1988} wished to test the H that there is no differ-
ence between the mussel and littorinid zones in
the mean number of eggs per capsule of Lvinosa.
The steps in the randomization test are as follows
{Manly 1997).

1. Calculate the difference between the mean
numbers of eggs per capsule of the two groups
(D).

2. Randomly reassign the 79 observations so
that 37 are in the littorinid zone group and 42
are in the mussel zone group and calculate the
difference between the means of the two groups
().

3. Repeat this step a large number of times,
each time calculating the D. How many
randomizations? Manly (1997) suggested 1000
times for a 0.05 test and 5000 times for a
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0.01 test. With medern computer power, these
numbers of randomizations only take a few
seconds.

4. Calculate the proportion of all the D;s that
are greater than or equal to D, (the difference
between the means in our samples). This is the
“Pvalue” and it can be compared to an a priori
significance level (e.g. 0.05) to decide whether to
reject the Hy or not (Neyman-Pearson tradition),
or used as a measure of “strength of evidence”
against the H  (Fisher tradition - see Manly
1997).

The underlying principle behind randomiza-
tion tests is that if the null hypothesis is true, then
any random arrangement of observations to
groups is equally possible {(Crowley 1992).
Randomization tests can be applied to situations
where we are comparing groups or testing
whether a set of observations occurs in a random
order {e.g. time series). They are particularly
useful when analyzing data for which the distri-
bution is unknown (Potvin & Roff 1993), when
random sampling from populations is not pos-
sible (e.g. we are using data that occurred oppor-
tunistically, such as museum specimens - see
Manly 1997) or perhaps when other assumptions
such as independence of observations are ques-
tionable, as when testing for temporal trends
(Manly 1997). There are sonie potential interpreta-
tion problems with randomization tests that
users should be aware of. First, they involve resam-
pling the data to generate a probability distribu-
tion of the test statistic. This means that their
results are more difficult to relate to any larger
population but the positive side is that they are
particularly useful for analyzing experiments
where random sampling is not possible but ran-
domization of observations to groups is used
{Ludbrook & Dudley 1998). Crowley {1992, p. 432)
argued that the difficulty of making inferences to
some population is a problem “of greater theoret-
ical than applied relevance” (see also Edgington
1995), particularly as randomization tests give
similar Pvalues to standard parametric tests when
assumptions hold (Manly 1997). Manly {1997) also
did not see this as a serious problem and pointed
out that one of the big advantages of randomiza-
tion tests is in situations when a population is not

relevant or the whole population is effectively
measured. Second, the H, being tested then is not
one about population parameters, but simply that
there is no difference between the means of the
two groups, i.e. is the difference between group
means “greater then we would expect by chance”.
Finally, the P value is interpreted differently from
the usual “classical” tests. In randomization tests,
the P value is the proportion of possible data rear-
rangements {e.g. between two groups) that are
equal to, or more extreme than, the one we
observed in our sample(s). Interestingly, because
the P value is determined by a (rejsampling
process, confidence intervals for the P value can be
determined (Crowley 1992).

Randomization tests for differences between
group means are not free of assumptions. For
example, randomization tests of the H, of no dif-
ference between means are likely to be sensitive to
differences in variances (Boik 1987, Stewart-Oaten
et al. 1992). Indeed, randomization tests of loca-
tion {e.g. mean) differences should be considered
to have an assumption of similar distributions in
the different samples, and transformations used
where appropriate {Crowley 1992). So these tests
should not be automatically applied to overcome
problems of variance heterogeneity.

Manly (1997) is an excellent introduction to
randomization tests from a biological perspective
and Crowley (1992) critically summarized many
applications of randomization tests in biology.
Other good references for randotnization tests are
Edgington {1995) and Noreen (1989).

3.3.3 Rank-based non-parametric tests

Statisticians have appreciated the logic behind
randomization tests for quite a long time, but the
computations involved were prohibitive without
computers. One early solution to this problem was
to rank the observations first and then randomize
the ranks to develop probability distributions of a
rank-based test statistic. Ranking the observations
has two advantages in this situation. First, deter-
mining the probability distribution of a rank-
based test statistic (e.g. sum of the ranks in each
sample) by randomization is relatively easy,
because for a given sample size with no ties, the
distribution is identical for any set of data. The
critical values for such distributions are tabled in
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many statistics bocks. In contrast, determining

' the probability distribution for a test statistic (e.g.

difference between means) based on randomizing

" the original observations was not possible before

complters except for small sample sizes. Second,
using the ranks of the observations removes the
assumption of normality of the underlying distri-
pution(s) in each group, although other assump-
tions may still apply.

Although there is a wide range of rank-based
non-parametric tests (Hollander & Wolfe 1999,
Siegel & Castellan 1988, Sprent 1993), we will only
consider two here. First, consider a test about dif
ferences between two populations. The Mann-
Whitney-Wilcoxon test is actually two indepen-
dently developed tests (Mann-Whitney and
Wwilcoxon) that produce identical results. The Hy
being tested is that the two samples come from
populations with identical distributions against
the H, that the samples come from populations
which differ only in location (mean or median).
The procedure is as follows.

1. Rank all the observations, ignoring the
groups. Tied observations get the average of their
ranks.

2. Calculate the sum of the ranks for both
samples. If the H, is true, we would expect a
similar mixture of ranks in both samples (Sprent
1993).

3. Compare the smaller rank sum to the
probability distribution of rank sums, based on
repeated randomization of observations to
groups, and test in the usual manner.

4, For larger sample sizes, the probability
distribution of rank sums approximates a
normal distribution and the z statistic can be
used. Note that different software can produce
quite different resuits depending on whether the
large-sample approximation or exact
randomization methods are used, and also how
ties are handled {Bergmann et al. 2000).

Second, we may have a test about differences
based on paired observations. For paired samples,
we can use the Wilcoxon signed-rank test to test
the H, that the two sets of observations come from
the same population against the H, that the pop-
ulations differ in location (mean or median}. This
test is actually a test of a single population param-

eter, analyzing the paired differences, and the
procedure is as follows.

1. Calculate the difference between the obser-
vations for each pair, noting the sign of each dif-
ference. If H, is true, we would expect roughly
equal numbers of + and — signs.

2. Calculate the sum of the positive ranks and
the sum of the negative ranks.

3. Compare the smaller of these rank sums to
the probability distribution of rank sums, based
on randomizatien, and test in the usual manner.

4. For larger sample sizes, the probability dis-
tribution of rank sums follows a normal distribu-
tion and the z statistic can be used, although the
concern of Bergmann ei al. (2000) about differ-
ences between the large sample approximation
and exact methods for the
Mann-Whitney-Wilcoxon test may also apply to
the Wilcoxon signed-rank test.

Another non-parametric approach using
ranks is the class of rank transformation tests.
This is 2 more general approach that theoreti-
cally can be applied to any analysis for which
there is a parametric test. The data are trans-
formed to ranks and then these ranks are ana-
lyzed using the appropriate parametric analysis.
Note that this technique is conceptually no differ-
ent to fransforming data to logs to meet the
assumptions of a parametric test (Chapter 4} and
is therefore not a true non-parametric test (Potvin
& Roff 1993). The rank transform approach will
generally give the same answer as the appropri-
ate rank-based test, e g. rank transform t testis the
same as the Mann-Whitney-Wilcoxon test
{Zimmerman & Zumbo 1993}, although if there
are a large number of ties the results will vary a
little. Tests based on the rank transform method
have also been used for various linear model ana-
lyses (Chapters 5, 8 and 9).

Although these non-parametric tests of loca-
tion differences do not assume a particular shape
{e.g. normal) of the underlying distributions, they
do assume that the distributions of the popula-
tions are similar, so the assumption of equal
variances still applies {Crowley 1992, Manly 1997,
Sprent 1993, Stewart-Qaten et al. 1992,

Zimmerman & Zumbo 1993). The common
strategy in biological research to use rank-based
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non-parametric tests to overcome variance hetero-
geneity is inappropriate. Variance heterogeneity
in the two-sample hypothesis test should be dealt
with by using a robust test, such as the Welch t test
(Section 3.3.1) or by transforming the data to
remove the relationship between the mean and
variance (Chapter 4).

These non-parametric tests generally have
lower power than the analogous parametric tests
when parametric assumptions are met, although
the difference in power is surprisingly small (e.g.
<5% difference for Mann-Whitney-Wilcoxon test
versus f test) given the former's use of ranks rather
than the original data (Hollander & Wolfe 1999).
With non-normal distributions, the non-paramet-
ric tests do cope better but because normality by
itself is the least critical of all parametric assump-
tions, its hard to recommend the ranlkbased tests
exceptin situations where (i} the distributions are
very weird, and transformations do not help, or
(ii) outliers are present (see Chapter 4). It is some-
times recommended that if the data are not meas-
ured on a continuous scale {i.e. the data are
already in the form of ranks), then tests like the
Mann-Whitney-Wilcoxon are applicable. We dis-
agree because such a test is equivalent to applying
a parametric test {e.g. t test) to the ranks, a much
simpler and more consistent approach. It is also
worth noting that the rank-based randomization
tests don’t really have any advantage over random-
ization tests based on the original data, except in
terms of computation {which is irrelevant with
modern computer power) - see Ludbrook &
Dudley (1998). Both have assumptions of equal dis-
tributions in the two groups, and therefore equal
variances, and neither is very sensitive to non-nor-
mality.

Rank-based tests have been argued to be more
powerful than parametric tests for very skewed
(heavy tailed) distributions. However, this is pri-
marily because rank-based tests deal with outliers
more effectively (Zimmerman & Zumbo 1993).
Indeed, outliers cause major problems for para-
metric tests and their identification should be a
priority for exploratory data analysis {Chapter 4).
The alternative to rankbased tests is to remove or
modify the outlying values by trimming or win-
sorizing (Chapter 2} and using a parametric test.
Note that non-parametric tests are not immune to

outliers; they are just not affected as much as par-
ametric tests (Zimmerman & Zumbo 1993).

3.4 | Multiple testing

3.4.1 The problem
One of the most difficult issues related to statisti-
cal hypothesis testing is the potential accumula-
tion of decision errors under circumstances of
multiple testing. As the number of tests
increases, so does the probability of making at
least one Type I error among the collectien of
tests. The probability of making one or more Type
[ errors in a set (or family) of tests is called the
family-wise Type I error rate, although Day &
Quinn (1989) and others have termed it experi-
ment-wise Type I error rate because it is often
used in the context of multiple comparisons of
means when analyzing experimental data. The
problem of increasing family-wise Type [ error
rate potentially occurs in any situation where
there are multiple significance tests that are con-
sidered simultaneously. These include pairwise
comparisons of treatment groups in an experi-
ment (Chapter 8), testing pairwise correlations
between multiple variables recorded from the
same experimental or sampling units (Rice 1989)
or multiple univariate analyses (e.g. { tests} of
these variables.

If the tests are orthogonal (i.e. independent of
each other), the family-wise Type I error can be
calculated:

1-(1—af (3.9

where « is the significance level (e.g. 0.05) for each
test and ¢ is the number of tests. For example,
imagine having a random sample from a number
of populations and we wish to test the Hs that
each independent pair of population means is
equal. We keep these comparisons independent by
not using the same population in more than cne
test. As the number of populations we wish to
compare increases, so does the number of pair-
wise comparisons required and the probability of
at least one Type I error among the family of tests
{Table 3.1). If the tests are non-orthogonal, then
the family-wise Type I error rate will be lower
(Ramsey 1993), but cannot be calculated as it will
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—
2% Table 3.1 | Accumulation of prabability of at least
i gne Type 1 error among a “family” of ests

i

Family-wise probability of at

No. of tesis least one Type | error
3 0.14

10 0.40

45 0.20

depend on the degree of non-independence
among the tests.

The different approaches for dealing with the
increased probability of a Type I error in multiple
testing situations are based on how the Type I
error rate for each test {the comparison-wise Type
[ error rate) is reduced to keep the family-wise
Type I error rate at some reasonable level. Each
test will then have a more stringent significance
level but as a consequence, much reduced power
if the H, is false. However, the traditional priority
of recommendations for dealing with multiple
testing has been strict control of family-wise Type
I error rates rather than power considerations.
Before describing the approaches for reducing the
Type I error rate for each test to control the family-
wise Type I error rate, we need to consider two
other issues. The first is how we define the family
of tests across which we wish to control the Type
I error rate and the second is to what level should
we control this error rate.

What comprises a family of tests (Shaffer 1995,
Hancock & Klockars 1996) for determining error
rates is a difficult decision. An extreme view, and
not one to which we subscribe, might be to define
a family as all the tests a researcher might do in a
lifetime (see Maxwell & Delaney 1950 and Miller
1981 for discussion), and try to limit the Type I
error rate over this family. Controlling error rates
over such a family of tests has interesting and
humorous implications for biologists’ career
structures (Morrison 1991). More generally, a
family is defined as some collection of simultane-
ous tests, where a number of hypotheses are tested
simultaneously using a single data set from a
single experiment or sampling program.

We agree with Hochberg & Tamhane (1987)
that unrelated hypotheses {in terms of intended

use or content) should be analyzed separately.
even if they are not independent of each other, We
recommend that each researcher, in a specific
analytical situation, must make an a priori deci-
sion about what a family of tests is; this decision
should be based, at least in part, on the relative
importance of Type I versus Type I errors.

The other issue is what level to set for family-
wise error rate. It is common practice for biolo-
gists to set the family-wise Type [ error rate to the
same level as they use for individual comparisons
{e.g. 0.05). This is not easy to justify, especially as it
reduces the comparison-wise Type I error rate to
very low levels, increasing the probability of Type
Il errors if any of the H s are false. So this is a very
conservative strategy and we should consider
alternatives. One may be to use a procedure that
controls the family-wise error rate but to set a sig-
nificance level above 0.05. There is nothing sacred
about 0.05 (see Section 3.6) and we are talking
here about the probability of any Type [ error in a
collection of tests. Setting this significance level a
priori to 0.10 or higher is not unreasonable.
Another approach is the interesting proposal by
Benjamini & Hochberg (1995). They also argued
that control of family-wise Type I error rate may
be too severe in some circumstances and recom-
mended controlling the false discovery rate (FDR).
This is the expected proportion of Type 1 errors
among the rejected hypotheses.

3.4.2 Adjusting significance levels and/or P
values

Whatever philosophy we decide to use, there will
be situations when some control of family-wise
Type I error rate will be required. The procedures
we will describe here are those which are indepen-
dent of the test statistic used and are based on
adjusting the significance levels for each test
downwards to control the family-wise Type I error
rate. Note that instead of adjusting significance
levels, we could also adjust the P values and use
the usual significance levels; the two approaches
are equivalent.

Bonferroni procedure

This is a general procedure for adjusting signifi-
cance levels to control Type I error rates in multi-
ple testing situations. Each comparison is tested at
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afc where « is the nominated significance level
(e.g. 0.05} and ¢ is the number of comparisens in
the family. It provides great control over Type I
error but is very conservative when there are lots
of comparisons, i.e. each comparison or test will
have little power. The big advantage is that it can
be applied to any situation where we have a family
of tests, so it has broad applicability.

Dunn-Sidak procedure

This is a modification of the Bonferreni procedure
that slightly improves power for each comparison,
which is tested at 1 — (1 — a)'%.

Sequential Bonferroni (Holm 1979)

This is a major improvement on the Bonferroni
procedure where the ¢ test statistics (F, t, etc}or P
values are ranked from largest to smallest and the
smallest P value is tested at «fc, the next at
af(c—1), the next at afic—2), etc. Testing stops
when a non-significant result occurs, This proce-
dure provides more power for individual tests and
is recommended for any situation in which the
Bonferroni adjustment is applicable.

Hochberg (1988) described a similar procedure
that works in reverse. The largest P value is tested
at «, rejecting all other tests if this one is signifi-
cant. If not significant, the next largest is tested
against «f2, and so on. Shaffer (1995) stated that
Hochberg's procedure is slightly more powerful
than Holm's.

Resampling-based adjusted P values

Westfall & Young (1993a,b} have developed an
interesting approach to P value adjustment for
multiple testing based around resampling. They
defined the adjusted P value as:

Py =PminP__ =P|H) (3.10)

where P_ . is the randem P value for any test.
Basically, their procedure measures how extreme
any particular P value is out of a list of P values
from multiple tests, assuming all Hs are true.
Westfall & Young (1993b) argue that their proce-
dure generalizes to Holm’s and other methods as
special cases and also accounts for correlations
among the P values.

3.5 | Combining results from
statistical tests

We sometimes need to evaluate multiple studies
in which statistical analyses have been used to test
similar hypotheses about some biological process,
such as the effect of a particular experimental
treatment. Qur interest is in summarizing the
size of the treatment effect across studies and also
testing an H about whether there is any overall
effect of the treatment.

3.5.1 Combining P values

Fisher (1954) proposed a method for combining
the P values from a number of independent tests
of the same hypothesis, even though different stat-
istical procedures, and therefore different Hs,
may have been used (see also Hasselblad 1994,
Manly 2001, Sokal & Rohlf 1995). For cindependent
tests, each producing a Pvalue for the testof a com-
mensurate H;, the P values can be combined by:

—:zi In{P)
i=1

which is distributed as a ¥* with 2c degrees of
freedom. The overall H, is that all the Hs in the
collection of tests are true (Sokal & Rohlf 1995). If
we reject the overall H,, we conclude that there is
an overall effect of whatever treatment or contrast
was commensurate between the analyses.
Alternative methods, including ones that weight
the outcomes from the different tests differently,
are described in Becker (1994) and Manly (2001).

(3.11)

3.5.2 Meta-analysis

The limitation of Fisher’'s method is that P values
are only one piece of information that we use for
drawing conclusions from a statistical test, They
simply indicate whether we would reject the H, at
the chosen level of significance. The biological
interpretation of that result would depend on the
size of the difference or effect, and the sample
sizes, so a better approach would incorporate
effect sizes, the variances of the effect sizes and
sample sizes when combining results from differ-
ent tests. Such a more sophisticated approach is
called meta-analysis. Meta-analysis is used primar-
ily when reviewing the literature on a particular
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topic. €& competition between organisms
(Gurevitch et al. 1992), and some overall summary
of the conclusions from different studies is
required.

Basically, meta-analysis calculates, for each
analysis being incorporated, a measure of effect
size [Rosenthal 1994, see also Chapters 7 and 8)
that incorporates the variance of the effect. These
effect sizes from the ¢ different tests are averaged
using the sum of the inverse of the variance of
each effect size (“inverse variance weighted
average”: Hasselblad 1994, p. 695). This average
effect size can be used as a summary measure of
the overall effect of the process being investigated.

Most meta-analyses are based on fixed effects
models (see also Chapter 8) where we are assum-
ing that the set of analyses we are combining
share some true effect size for the process under
investigation (Gurevitch & Hedges 1993). Under
this model, the test of H, that the true effect size
is zero can be tested by constructing confidence
intervals (based on the standard normal distribu-
tion) for the true average effect size (Gurevitch &
Hedges 1993) and seeing if that confidence inter-
val includes zero at the chosen level (e.g. 95%). We
can also calculate a measure of homogeneity (Q)
for testing whether all ¢ effect sizes are equal. Q is
the sum of weighted (by the inverse of the vari-
ance of each effect size) squared differences
between each effect size and the inverse variance
weighted average of the effect sizes. It sounds
messy but the computations are quite simple
{Gurevitch & Hedges 1993, Hasselblad 1994). { is
distributed as a y* with c—1 degrees of freedom.
In some cases, the analyses being combined fall
into different a priori groups (e.g. studies on com-
petition in marine, freshwater and terrestrial
environments) and within-group and between-
group measures of homogeneity can be calculated
(analogous to partitioning the variance in an
ANOVA - Chapter 8).

Meta-analysis can be used in any situation
where an effect size, and its variance, can be cal-
culated so it is not restricted to continuous vari-
ables. Nor is it restricted to fixed effects models,
with both random and mixed models possible
(Gurevitch & Hedges 1993; see also Chapters 8 and
9). Meta-analyses do depend on the quality of the
literature being surveyed. For some studies, not

encugh information is provided to measure an
effect size or its variance. There is also the issue of
quality control, ensuring that the design of the
studies we have used in a meta-analysis are accept-
able, and whether we can combine studies based
on experimental manipulations versus those
based on weaker survey designs. Nonetheless,
meta-analysis is increasing in use in the biological
literature and some appreciation of its strengths
and weaknesses is important for biologists. One
important weakness worth noting is the “file-
drawer problem”. The database of published
papers is highly censored, with nonsignificant
results underrepresented, so a meta-analysis of
published work should include careful thought
about what “population” these published studies
represent.

Two detailed texts are Hedges & Olkin {1985)
and the volume edited by Cooper & Hedges (1994),
although excellent reviews from a biological per-
spective include Gurevitch & Hedges (1993) and
Hasselblad (1994).

3.6 | Critique of statistical
hypothesis testing

Significance testing, especially null hypothesis
significance testing, has been consistently criti-
cized by many statisticians (e.g. Nester 1996,
Salsburg 1985) and, in particular, in the recent
psychologicali and educational literature [(e.g.
Carver 1978, 1993, Cohen 1990, 1994, Shaver 1993,
Harlow et al. 1997 and chapters therein}. Biologists
have also questioned the validity of statistical
hypothesis testing (e.g. Johnson 1999, Jones &
Matloff 1986, Matloff 1991, Stewart-Oaten 1996). A
thorough review of this literature is beyond the
scope of our book but a brief discussion of these
criticisms is warranted.

3.6.1 Dependence on sample size and
stopping rules

There is no question that results for classical stat-
istical tests depend on sample size (Chow 1988,
Mentis 1988, Thompson 1993}, i.e. everything else
being the same, larger sample sizes are more
likely to produce a statistically significant result
and with very large sample sizes, trivial effects
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Box 3.5 | Likelihood inference and the likelihood principle

Oakes (1986) described four major schools of statistical inference, three of which
we describe in this chapter — Fisherian and Neyman—Fearson hypothesis testing,
aspects of both being used by many biclogists, and the Bayesian methods based on
subjective probabilities. The fourth school is likeliwod inference, based on the like-
lhood function that we outlined in Chapter 2 (see also Royall 1997). There are two
important issues invohed. First, the evidence that the observed data provide about
the hypothesis is represented by the likelihcod function, the likelihood of observing
our sample data given the hypothesis. Second, the likelihood principle states that
two sets of data that produce proportional likelihood functions are equal in terms
of evidence about the hypothesis. One of the arguments often used against statis-

tical significance tests is that they violate the likelihood principle.
Likelihood inference is really about relative measures of evidence of support
between competing hypatheses so the Tocus is on the hkelihood ratio:

L{data|H,)
L{data|H,)

although, as discussed in Chapter 2, we often convert likelihoods to log-likelihoods
and the result is a ratio of log-likelihoods. The likelihood ratio can be viewed as a
measure of the relative strength of evidence provided by the data in H, compared

with H,,

Likelihoods are relevant to both classical and Bayesian inference. Likelihood
ratios can often be tested in a classical framewark because, under many conditions,
the ratio follows a_y? distribution. The observed data conitribute to a Bayesian ana-

lysis solely through the likelihood function and, with a nen-informative, uniform prior;
the Bayesian posterior probability distribution has an identical shape to the likefi-

hoaod function.

can produce a significant result. However, while
this is true by definition and can cause problems
in complex analyses (e.g. factorial ANOVAs) where
there are numerous tests based on different df,
designing experiments based on a priori power
considerations is crucial here. Rather than arbi-
trarily choosing sample sizes, our sample size
should be based on that necessary to detect a
desired effect if it occurs in the population(s)
(Cohen 1988, 1992, Fairweather 1991, Peterman
1990a,b). There is nothing new in this recommen-
dation and we will consider power analysis
further in Chapter 7.

The sample size problem relates to the stop-
ping rule, how you decide when to stop an experi-
ment or sampling program. In classical
hypothesis testing, how the data were collected
influences how we interpret the result of the test,
whereas the likelihood principle (Box 3.5) requires

the stopping rule to be irrelevant [Oakes 1986).
Mayo (1996) and Royall {1997) provide interesting,
and contrasting, opinions on the relevance of
stopping rules to inference.

3.6.2 Sample space — relevance of data
not observed

Awell-documented aspect of P values as measures
of evidence is that they comprise not only the
long-run probability of the observed data if H is
true but also of data more extreme, i.e. data not
observed. The set of possible outcomes of an
experiment or sampling exercise, such as the pos-
sible values of a random variable like a test statis-
tic, is termed the sample space. The dependence of
statistical tests on the sample space violates the
likelihood principle (Box 3.5) because the same
evidence, measured as likelihcods, can produce
different conclusions (Royall 1997). The counter

CRITIQUE OF STATISTICAL HYPOTHESIS TESTING

53

argument, detailed by Mayo {1996), is that likeli-
hoods do not permit measures of probabilities of
error from statistical tests. Measuring these errors
in a frequentist sense is crucial to statistical
hypothesis testing.

3.6.3 P values as measure of evidence
Cohen (1994) and others have argued that what we
really want to know from a statistical test is the
probability of H, being true, given our sample
data, i.e. P{H |data). In contrast, Mayo (1996) pro-
posed that a frequentist wants to know what is
“the probability with which certain outcomes
would occur given that a specified experiment is
performed” (p. 10). What the classical significance
test tells us is the long-run probability of obtain-
ing our sample data, given that H, is true, ie.
Pldata|H}. As Cohen (1994) and others have
emphasized, these two probabilities are not inter-
changeable and Bayesian analyses (Section 3.7),
which provide a measure of the FH |data), can
produce results very different from the usual sig-
nificance test, especially when testing two-tailed
“point” hypotheses {Berger & Sellke 1987). Indeed,
Berger & Sellke (1987) presented evidence that the
Pvalue can greatly overstate the evidence against
the H, (see also Anderson 1998 for an ecological
example). We will discuss this further in the next
section. In reply to Berger & Sellke (1987), Morris
(1987) argued that differences between P values
and Bayesian posteriors will mainly occur when
the power of the test is weak at small sample sizes;
otherwise P values work well as evidence against
the H,. Reconciling Bayesian measures and P
values as evidence against the H, is still an issue of
debate among statisticians.

3.6.4 Null hypothesis always false

Cohen (1990) and others have also argued that
testing an H is trivial because the H is always
false: two population means will never be exactly
the same, a population parameter will never be
exactly zero. In contrast, Frick (1995) has pointed
out an H, can be logically true and illustrated this
with an ESP experiment. The H was that a person
in one room could not influence the thoughts of
a person in another room. Nonetheless, the argu-
ment is that testing H s is pointless because most
common Hgs in biology, and other sciences, are

always false. Like Chow (1988, 1991) and Mulaik et
al. {1997), we argue that the H, is simply the com-
plement of the research hypothesis about which
we are trying to make a decision. The H, repre-
sents the default (or null) framework that
“nothing is happening” or that “there is no effect”
(3.1.1}. A rejection of the H; is not important
because we thought the H, might actually be true.
It is important because it indicates that we have
detected an effect worth reporting and investigat-
ing further, We also emphasise that H,s do not
have to be of the “no effect” form. There may be
good reasens to test H s that a parameter equals a
non-zero value. For example, in an environmental
monitoring situation, we might compare control
and impact locations to each other, and look for
changes through time in this control-impact dif-
ference. We might find that two locations are
quite different from each other as a result of
natural processes, but hypethesize that a human
activity will change that relationship.

3.6.5 Arbitrary significance levels

One long-standing criticism has been the arbitrary
use of @ =0.05 as the criterion for rejecting or not
rejecting H,. Fisher originally suggested 0.05 but
later argued against using a single significance
level for every statistical decision-making process.
The Neyman-Pearson approach also does not rely
on a single significance level (@}, just a value
chosen a priori. There is no reason why all tests have
to be done with a significance level fixed at 0.05.
For exampie, Day & Quinn (1989) have argued that
there is nothing sacred about 0.05 in the context of
multiple comparisons. Mapstone (1995) has also
provided a decision-making framework by which
the probabilities of Typel and Type Il errors are set
based on our assessment of the cost of making the
two types of error {Section 3.2.2). The point is that
problems with the arbitrary use of 0.05 as a signifi-
cance level are not themselves a reason to dismiss
statistical hypothesis testing. Irrespective of which
philosophy we use for making statistical decisions,
some criterion must be used.

3.6.6 Alternatives to statistical hypothesis
testing

In the discussions on significance testing, particu-

larly in the psychological literature, three general
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alternatives have been proposed. First, Cohen
{1990, 1994) and Qakes (1986) and others have
argued that interval estimation and determina-
tion of effect sizes (with confidence intervals) is a
better alternative to testing null hypotheses.
While we encourage the use and presentation of
effect sizes, we do not see them as an alternative
to significance testing; rather, they are comple-
mentary. Interpreting significance tests should
always be done in conjunction with a measure of
effect size (e.g. difference between means) and
some form of confidence interval. However, effect
sizes by themselves do not provide a sensible phil-
osophical basis for making decisions about scien-
tific hypotheses,

Second, Royall (1997} summarized the view
that likelihoods provide all the evidence we need
when evaluating alternative hypotheses based on
the observed data. Finally, the Bayesian approach
of combining prior probability with the likeli-
hood function to produce a posterior probability
distribution for a parameter or hypothesis will be
considered in the next secticn.

In summary, biologists should be aware of the
limitations and flaws in statistical testing of null
hypotheses but should also consider the philo-
sophical rationale for any alternative scheme.
Does it provide us with an objective and consistent
methodology for making decisions about hypoth-
eses? We agree with Dennis (1996), Levin {1998),
Mulaik ef al. (1997) and others that misuse of stat-
istical hypothesis testing does not imply that the
process is flawed. When used cautiously, linked to
appropriate hypotheses, and combined with other
forms of interpretation (including effect sizes and
confidence intervals), it can provide a sensible and
intelligent means of evaluating biological hypoth-
eses, We emphasize that statistical significance
does not necessarily imply biological importance
(Box 3.4); only by planning studies and experi-
ments so they have a reasonable power to detect
an effect of biological importance can we relate
statistical and biological significance.

37 | Bayesian hypothesis testing

One approach that may provide a realistic alterna-
tive to classical statistical hypothesis testing in

some circumstances is Bayesian methodology. As
we discussed in Chapter 2, the Bayesian approach
views population parameters (e.g. means, regres-
sion coefficients) as random, or at least unknown,
variables. Bayesians construct posterior probabil-
ity distributions for a parameter and use these
probability distributions to calculate confidence
intervals. They also use prior information to
modify the probability distributions of the param-
eters and this prior information may include sub-
jective assessment of prior probabilities that a
parameter may take specific values.

The Bayesian approach rarely incorporates
hypothesis testing in the sense that we have been
discussing in this chapter and Bayesian do not
usually evaluate alternative hypotheses or modeis
with a rejectfaccept decision framework. They
simply attach greater or lesser favor to the alterna-
tives based on the shape of the posterior distribu-
tions. Nonetheless, there are some formal ways of
assessing competing hypotheses using Bayesian
methods.

We might, for example, have two or more rival

hypotheses (H,, H,,...H); in the classical hypothe-
sis testing framework, these would be H, and H,,
although a null hypothesis of no effect would
seldom interest Bayesians. We can then use a
similar version of Bayes theorem as described for
estimation in Chapter 2:
P(H, |data)= %}ﬁ)ﬂﬁ (3.11)
where P(H, | data) is the posterior probability of H,.
PH,) is the prior probability of H, and
P{data|H,){P(data) is the standardized likelihood
function for H, the likelihood of the data given
the hypothesis. For example, we could test an H;
using the Bayesian approach by:

postericr probability of H, = likelihood
of data given H‘prior probability of H, (3.12}

The posterior probability is obtained by integrat-
ing (if the parameter in the H, is continuous) or
summing (if discrete) under the posterior prob-
ability distribution for the range of values of the
parameter specified in the H,. For continuous
parameters, the procedure is straightforward for
directional (composite] hypotheses, e.g. H: 8 less
than some specified value, but difficult for a point
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(simple) hypothesis, e.g. H;: 8 equals some spec-
ified value, because we cannot determine the
probability of a single value in a probability distri-
pution of a continuous variable,

We can present the relative evidence for H
and H, as a posterior adds ratio:

P(H,|data)
P(H,|data)

i.e. the ratio of the posterior probabilities, given
the data, of the competing hypotheses (Reckhow
1990). This posterior odds ratio is also the product
of the prior odds ratio with a term called the Bayes
factor (Barnett 1999, Ellison 1996, Kass & Raftery
1995, Reckhow 1990). If the two hypotheses were
considered equally likely beforehand, then the
Bayes factor equals the posterior odds ratio. If the
prior odds were different, then the Bayes factor
will differ from the posterior odds ratio, although
it seems that the Bayes factor is primarily used in
the situation of equal priors (Kass & Raftery 1995).
Both the Bayes factor and the posterior odds ratio
measure the weight of evidence against H, in
favor of H,, although the calculations can be
reversed to measure the evidence against H.

When both hypotheses are simple (i.e. # equals
a specified value), the Bayes factor is just the like-
lihood ratic (Box 3.5):

_ L{data|Hg)
L{data|H,)

(3.13)

(3.14)

where the numerator and denominator are the
maxima of the likelihood functions for the values
of the parameter specified in the hypotheses.
When one or both hypotheses are more complex,
the Bayes factor is still a likelihood ratio but the
numerator and denominator of Equation 3.14 are
determined by integrating under the likelihood
functions for the range of parameter values spe-
Cific in each hypothesis {(Kass & Raftery 1995). We
are now treating the likelihood functions more
like probability distributions. For complex
hypotheses with multiple parameters, this inte-
gration may not be straightforward and the
Monte Carlo posterior sampling methods men-
tioned in Chapter 2 might be required.

To choose between hypotheses, we can either
set up a decision framework with an a priori criti-
cal value for the odds ratio (Winkler 1993) or,

more commonly, use the magnitude of the Bayes
factor as evidence in favor of a hypothesis.
A simpler alternative to the Bayes factor is
the Schwarz criterion (or Bayes Information
Criterion, BIC), which approximates the log of the
Bayes factor and is easy to calculate. Ellison (1996)
has provided a table relating different sizes of
Bayes factors (both as log, B and 2log B) to conclu-
sions against the hypothesis in the denominator
of Equation 3.14. Odds and likelihood ratios will
be considered in more detail in Chapters 13 and
14.

Computational formulae for various types of
analyses, including ANOVA and regression linear
models, can be found in Box & Tiao {1973}, while
Berry & Stangl (1996) have summarized other
types of analyses. Hilborn & Mangel (1997) focused
on assessing the fit of models to data using
Bayesian methods. In a fisheries example, they
compared the fit of two models of the dynamics of
hake off the coast of Namibia where cne model
was given a higher prior probability of being
correct than the second model. As another
example, Stow et al. (1995) used Bayesian analysis
to estimate the degree of resource dependence ()
in lake mesocosms with different ratios of grazing
Daphnia. Using a non-informative prior, a high
value of ¢, indicating much interference among
the predators, had the highest posterior probahbil-
ity. Stow et al. (1995) pointed out that, in contrast,
classical statistical analysis would only have
shown that ¢ was significantly different to some
hypothesized value. A third example is Crome et
al. (1996}, who compared Bayesian (with a range of
prior distributions) and classical linear model
analyses of a BACI (Before-After-Control-lmpact)
design assessing the effects of logging on birds
and mammals in a north Queensland rainforest.
Although the two approaches produced similar
conclusions for some variables, the posterior dis-
tributions for some variables clearly favored some
effect sizes over others, providing more informa-
tion than could be obtained from the classical test
of a null hypothesis.

When classical P values [P(data|H,)] are com-
pared to Bayes factors or Bayesian posterior prob-
abilities [P(H,|data)], the differences can be
marked, even when H, and H, are assigned equal
prior probabilities (i.e. considered equally likely).
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Berger & Sellke (1987) and Reckhow (1990) argued
that the differences are due to the P value being
“conditioned” on the sample space, including an
area of a probability distribution that includes
hypothetical samples more extreme than the one
observed (Section 3.6.2). In contrast, the Bayesian
posterior probability is conditioned only on the
observed data through the likelihood. The differ-
ences between P values and Bayesian posterior
probabilities seem more severe for two-tailed
testing problems (Casella & Berger 1987), where
the P value generally overstates the evidence
against H, i.e. it rejects H, when the posterior
probability suggests that the evidence against H
is relatively weak. Nonetheless, P values will
mostly have a monotoenic relationship with poste-
rior probabilities of H,, i.e. smaller P values imply
smaller posterior probabilities, and for one-tailed
tests (e.g. ANOVA Fratio tests), there may be equiv-
alence between the P values and posterior prob-
abilities for reasonable sorts of prior distributions
{Casella & Berger 1987). So it may be that the rela-
tive sizes of P values can be used as a measure of
relative strength of evidence against H,. in the
sense that they are related to Bayesian posterior
probabilities (but see Schervish 1996; also Royall
1997 for alternative view).

One of the main difficulties classical frequen-
tist statisticians have with Bayesian analyses is the
nature of the prior information (i.e. the prior
probabilities). We discussed this in Chapter 2 and
those issues, particularly incorporating subjective
probability assessments, apply just as crucially for
Bayesian hypothesis testing.

So, when should we adopt the Bayesian
approach? We have not adopted the Bayesian phi-
losophy for the statistical analyses described in
this book for a number of reasons, both theoreti-
cal and practical. First, determining prior prob-
abilities is not straightforward in those areas of
biology, such as ecology, where much of the
research is still exploratory and what happened at
other times and places does ot necessarily apply
in a new setting. We agree with Edwards {1996}
that initial analyses of data should be “journalis-
tic”, i.e. should not be influenced by our opinions
of what the outcome might be (prior probabilities)
and that there is an argument that using prior
{personal) beliefs in analyses should not be

classified as science. While Carpenter (1990} and
others have argued that the prior probabilities
have relatively little influence on the outcome
compared to the data, this is not always the case
(Edwards 1996). For the types of analyses we will
discuss in this book, any prior information has
probably already been incorporated in the design
compotients of the experiment. Morris {1987) has
argued that P values are interpretable in well-
designed experiments (and observational studies)
where the power to detect a reasonable H, (effect)
has been explicitly considered in the design
process. Such a well-designed experiment expli-
citly considering and minimizing Type I and Type
IT errors is what Mayo (1996) would describe as a
severe test of an hypothesis. Second, treating a
population parameter as a random variable does
not always seem sensible. In ecology, we are often
estimating parameters of real populations (e.g.
the density of animals in an area) and the mean of
that population is a fixed, although unknown,
value, Third, Bayesian analyses seem better suited
to estimation rather than hypothesis testing (see
aiso Dennis 1996). Some well-known Bayesian
texts (e.g. Box & Tiao 1973, Gelman et al. 1995} do
not even discuss hypothesis testing in their
Bayesian framework. In contrast, the philosophi-
cal position we take in this book is clear. Advances
in biology will be greatest when unambiguously
stated hypotheses are tested with well-designed
sampling or preferably experimental methods.
Finally, the practical application of Bayesian ana-
lyses is not straightforward for complex analyses
and there is littie software currently available (but
see Berry 1996, Berry & Stangl 1996 and references
in Ellison 1996). We suspect that if biologists have
enough trouble understanding classical statisti-
cal analyses, Rayesian analyses, with their reli-
ance on defining probability distributions and
likelihood functions explicitly, are more likely to
be misused.

There are some circumstances where the
Bayesian approach will be more relevant. In envi-
ronmental management, managers often wish to
know the probability of a policy having a certain
outcome or the probabilities of different policies
being successful. Whether policies are signifi-
cantly different from one another (or different
from some hypothesized value} is not necessarily
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helpful and Bayesian calculation of posterior
probabilities of competing models might be
appropriate. Hilborn & Mangel (1997) also empha-
size Bayesian methods for distinguishing between
competing models. This in itself has difficulties.
Dennis {1996) correctly pointed out the danger of
various interest groups having input into the
development of prior probabilities, although we
have argued earlier (Section 3.2.2) that such nego-
tiation in terms of error rates in the classical deci-
siop-making framework should be encouraged.
One-off, unreplicated, experiments might also be
more suited to Bayesian analyses (Carpenter 1990)

because the longrun frequency interpretation
doesn’t have much meaning and the probability
of a single event is of interest.

Bayesian approaches are being increasingly
used for analyzing biological data and it is impor-
tant for biclogists to be familiar with the
methods. However, rather than simply being an
alternative analysis for a given situation, the
Bayesian approach represents a different philoso-
phy for interpreting probabilities and we, like
Dennis (1996), emphasize that this must be borne
in mind before it is adopted for routine use by
biologists.




‘ Chapter 4

Graphical exploration of data

Graphical displays are very important in the ana-
lysis of data. There are four main functions of
graphical displays in data analysis (Snee & Pfeifer
1983).

= Exploration, which involves checking data for
unusual values, making sure the data meet the
assumptions of the chosen analysis and occa-
sionally deciding what analysis (or model} to
use,

+ Analysis, which includes checking assump-
tions but primarily ensuring that the chosen
model is a realistic fit to the data.

» Presentation and communication of results,
particularly summarizing numerical informa-
tion (Chapter 19).

* Graphical aids, which are graphical displays
for specific statistical purposes, e.g. power
curves for determining sample sizes.

We describe graphical displays for the first two
functions here, and the third in our final chapter,
although some graphs are useful for more than
one function, e.g. scatterplots of Y against X are
important exploratory tools and often the best
way of communicating such data to readers.

4.1 | Exploratory data analysis

Before any formal statistical analysis is carried
out, it is essential to do preliminary checks of
your data for the following reasons:

* to reassure yourself that you do actually have
some meaningful data,

* to detect any errors in data entry,

» to detect patterns in the data that may not be
revealed by the statistical analysis that you will
use,

= to ensure the assumptions of the analysis are
met,

* to interpret departures from the assumptions,
and

+» to detect unusual values, termed outliers
(Section 4.5).

Exploratory data analysis (EDA} was originally
developed by John Tukey (1977) and extended by
Hoaglin et al. (1983). The aim is basically to
describe and find patterns in your data. A good
introduction for biologists is given by Ellison
(1993).

4.1.1 Exploring samples

It is usually very important to become familiar
with your data before doing any formal analysis.
What sort of numbers are they? How variable are
they? What sort of distribution do they have? For
small data sets, simply examining the raw data in
rows and columns is possible. For large samples,
especially with multiple variables, graphical tech-
niques are much more appropriate.

The most important thing we want to know
about our sample data, and therefore about the
population from which our data came, is the
shape of the distribution. Many of the statistical
procedures we describe in this book assume, to
some extent, that the variables being analyzed
have normal distributions. The best way of exam-
ining the distribution of values of a variable
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[FEOLEE N Histograms and
boxplots for (a) normal and
{b} positively skewed data (n = 200).

but to use the observed data to
generate a probability density
curve. This is non-parametric
estimation because we are not
assuming a specific underly-
ing population distribution
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is with a density plot, where the frequencies
(“densities”) of different values, or categories, are
represented. Many of the graphs described below
are density plots and show the shape of a sample
distribution.

Histogram

One simple way of examining the distribution of
a variable in a sample is to plot a histogram, a
graphical representation of a frequency (or
density) distribution. A histogram is a type of bar
graph {see Chapter 19) grouping the observations
into a priori defined classes on the horizontal axis
and their frequency on the vertical axis (Figure
4.1). If the variable is continuous, the size (width)
of the classes will depend on the number of obser-
vations: more observations mean that more
classes can be used. The values of a discrete vari-
able usually determine the classes. Histograms
are very useful for examining the shape of a distri-
bution of observations (Figure 4.1). For example, is
the distribution symmetrical or skewed? Is it uni-
maodal or multimodal? The vertical axis of a histo-
gram can also be relative frequency (proportions).
cumulative frequency or cumulative relative fre-
quency. Unfortunately, histograms are not always
particularly useful in biology, especially experi-
mental work, because we are often dealing with
small sample sizes (<<20).

A useful addition to a histogram is to superim-
pose a more formal probability density function.
For example, we could include a normal probabil-
ity distribution function, based cn our sample
mean and variance. An alternative approach is to
not stipulate a specific distribution for the sample

for our variable. Qur estima-
tion procedure may produce
probability density curves that
are symmetrical, asymmetrical or multimodal,
depending on the density pattern in the observed
data. The standard reference to non-parametric
density estimation is Silverman (1986) and the
most common method is kernel estimation. For
each observation, we construct a window of a
certain width, like the categories in a histogram.
We then fit a symmetric probability density func-
tion {called the kernel) to the observations in each
window; commonly, the normal distribution is
used. The estimated density for any value of our
variable is simply the sum of the estimates from
the density functions in each window. The calcu-
lations are tedious, even when the kernel is a
normal distribution, but kernel density estima-
fors are now common options in statistical soft-
ware.

The window width is sometimes termed the
smoothing parameter because it influences the
shape of final estimated density function. For stan-
dard kernel density estimation, the smoothing
parameter is constant for all observations; other
approaches allow the smocthing parameter to
vary depending on the local density of data
(Silverman 1986). If the smoothing parameter is
low (narrow windows), then the density function
can have numerous modes, many artificial if the
sample size is small. If the smoothing parameter is
high (wide windows), then the density function
will be much smoother but important detail, such
as real modes, might be missed. Clearly, kernel
estimation requires a large sample size so that
there can be enough observations to reliably fit a
probability density function (e.g. normal) in each
window and also enough windows to represent

Y
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AEA LW Histogram with normal density function {dashed
line) and kernel density curve or smooth (solid line) for a
positively skewed distribution (n = 200}). Smoothing
parameter for kernel curve equals one.

the detail present in the data. The choice of the
probability density function fitted in each window
is also determined by the user. Symmetrical distri-
butions such as normal are most common,
although others are possible (Silverman 1986).
For the positively skewed distribution plotted
in Figure 4.2, it is clear that a normal distribution
function based on the sample mean and variance
isnotagood fit to the data. In contrast, the non-par-
ametric kernel smoothing curve is a much more
realistic representation of the distribution of the
data. The kernel density estimator is particularly
useful as an exploratory tool for describing the
shape of a distribution if we have a sample of rea-
sonable size and may indicate what more formal
parametric distribution should be used in model-
ing {see Chapter 13). Other uses include density

(ZT-OECW R Dotplots and boxplots @)

of concentrations of (2) SO,?~ and
{b) I~ for 39 sites from forested

watersheds in the Catskill a
Mountains in New York State (data o §8
from Lovert et af. 2000). o8

estimation for bivariate distributions (see Chapter
5)and for determining density functions for use in
procedures such as discriminant function analysis
{Silverman 1986).

Dotplot

A dotplot is a plot where each observation is rep-
resented by a single dot or symbol, with the value
of the variable along the horizontal axis
(Wilkinson 1999a). Dotplots can be used for uni-
variate and bivariate data (Sasieni & Royston
1996); in the latter case, they are like scatterplots.
Univariate dotplots can be very effective ways of
representing single samples because skewness
and unusually large or small values are easy to
detect (Figure 4.3).

Boxplot

A good alternative for displaying the sample
observations of a single variable, when we have
a sample size of about eight or more, is to use a
boxplot (Figure 44 and Figure 4.5), also called a
box-and-whiskers plot. The boxplot uses the
median to identify location and 25% quartiles for
the hinges (ends of the box). The difference
between the values of the two hinges is called the
spread. Unusually large or small values (outliers)
are highlighted, although the actual formulae
for identifying outliers vary between different
textbooks and statistical software (commonly, an
outlier is any value greater than 1.5 times the
spread outside the closest hinge). The lines (or
whiskers) extend to the extreme values within
1.5 times the spread beyond the hinges. Boxplots
efficiently indicate several aspects of the sample.

¢ The middle of the sample is identified by the
median, which is resistant (robust) to unusual
values (Chapter 2).
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¢ The variability of the sample is indicated by
the distance between the whiskers (with or
without the outliers).

* The shape of the sample, especially whether it is
symmetrical or skewed {Figure 4.1, Figure 4.3).

+ The presence of outliers, extreme values very
different from the rest of the sample (Figure 4.3).

Because boxplots are based on medians and
quartiles, they are very resistant to extreme
values, which don’t affect the basic shape of the
plot very much (Chapter 2}. The boxplots and dot-
plots for the concentrations of 50,*~ and C1~ from
39 stream sites in the Catskill Mountains are pre-
sented in Figure 4.3 (Lovett et al. 2000, Chapter 2).
The skewness and outliers present in the sample
of C1™ are clear, in contrast to the symmetrically
distributed SO,*>~. Boxplots can also be used to
graphically represent summaries of data in
research publications (Chapter 19) instead of the
more traditional means {= standard deviations or
similar). This is particularly the case when non-
parametric analyses are used, as the mean might

Sex More elaborate boxplots

are also available. Hyndman

(1996) described a modifica-

tion of the boxplot that graphs high-density

regions and shows bimodality very well.

Rousseeuw et al. (1999) described the bagplot, a

bivariate version of the boxplot. Both papers pro-
vided computer code for these plots.

Scatterplot

When we have two variables, each measured on
the same units, we are often interested in the rela-
tionship between the variables. A very important
graphical technique is the scatterplot, where the
vertical axis represents one variable, the horizon-
tal axis represents the other variable and the
peints on the plot are the individual observations
{Chapter 5). Scatterplots are very informative,
especially when bordered by boxplots for each var-
iable (Figure 5.3). Nonlinearity and outliers can be
identified, as well as departures from fitted linear
models.

Scatterplot matrix (SPLOM)
An extension of the scatterplot to three or more
variables is the scatterplot matrix (SPLOM}. Each
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panel in the matrix represents a scatterplot
between two of the variables and the panels along
the diagonal can indicate which variable forms
the horizontal and vertical axes or show other uni-
variate displays such as boxplots or frequency dis-
tributions (Figure 4.6). Recently, Murdoch & Chow
(1996} illustrated a method for displaying large
correlation matrices (Chapter 15), where different
shaped and angled ellipses represent the magni-
tude of the correlation.

Multivariate plots

There are other, more complex, methods for
graphing multivariate data, including icon plots,
such as Cherncff’s faces and the like (see Chapter
15; also Cleveland 1994, Tufte 1983).

42 | Analysis with graphs

Most of the analyses that we describe in this book
are based on linear models (regression and analy-
sis of variance models). These analyses have impor-
tant assumptions, besides that of random
sampling, that must be assessed before linear
models (or even t tests) can be applied. We discuss
these assumptions in detail in the relevant chap-
ters, but briefly introduce them here in the

context of exploratory data analysis. Sometimes,
these assumptions are not critical because the
result of your analysis (estimation or hypothesis
tests) will be the same even if the assumptions are
violated. Such tests are termed robust. Other
assumptions are critical because the statistical
test may give unreliable results when assump-
tions are violated.

4.2.1 Assumptions of parametric linear
models

The assumptions of linear models apply to the

response (or dependent) variable and also to the

error terms from the fitted model.

Normality

Linear models are based on OLS estimation and
the reliability of interval estimates and tests of
parameters depends on the response variable
being sampled from a population (or populations)
with a normal (Gaussian} distribution. Most ana-
lyses are robust to this assumption, particularly if
sample sizes are equal. Despite this robustness,
the symmetry (roughly equal spreads on each side
of the mean or median) of each sample should be
checked with a graphical procedure like boxplots.
Another way of assessing normality is to use prob-
ability plots (pplots). These plots examine a cumu-
lative frequency distribution of your data, and
compare the shape of that distribution to that
expected of a normal distribution having the
same mean and variance. If your data are normal,
the pplot will be a straight line; various kinds of
skewness, multimodality, etc., will show as a
kinked line. A pplot is shown in Figure 4.7 for a
normal and a lognormal distribution. We don’t
suggest that you do any formal analyses of these
plots, but just look for major kinks. The method is
really only useful for large sample sizes, say 25 or
more; with fewer data points, you'll always get a
fairly irregular line.

The most common asymmetry in biological
data is positive skewness, i.e. populations with a
long right tail (Figure 4.1). Positive skewness in
biological data is often because the variables have
a lognormal (measurement variables) or a Poisson
(count) distribution. In our experience, skewed
distributions are more cominon than symmetri-
cal distributions. This makes sense when you
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realize that most variables cannot have values less
than zero (lengths, weights, counts, etc.) but have
no mathematical upper limit (although there
may be a biological limit). Their distributions are
usually truncated at zero, resulting in skewness in
the other direction. Transformations of skewed
variables to a different scale (e.g. log or power
transformations) will often improve their normal-
ity (Section 4.3).

The other distribution that will cause major
problems is multimodal, where there are two or
more distinct peaks. There is not much that you
can do about this distribution; both parametric
and non-parametric tests become unreliable. The
best option is to treat each peak of the distribu-
tion as representing a different “population”, and
to split your analyses into separate populations. In
ecological studies, you might get such a problem
with different cohorts in a population of plants or
animals, and be forced to ask questions about the
mean size of the first, second, etc., cohorts. In
physiological or genetic studies, you might get
such a result from using animals or plants of dif
ferent genotypes. For example, allozymes with
“fast” and “slow” alleles might produce two differ-
ent classes of physiological response, and you
could analyze the response of fast and slow tissues
as an additional factor in your experiment.

One final distribution that often causes prob-
lems in biological data is when we have many
zeropes, and a few non-zero points. In his case, the
distribution is so skewed that no transformation
will normalize the distribution; whatever we do to
these zeros, they will remain a peak in our distri-
bution. Non-parametric approaches will fare little
better, as these values will all be assigned the

_10 20 30 40 50 60 70 80 whether or not a particular

Crr replicate has a response or
not, and the level of response
when it occurs. We could make two different com-
parisons — does the likelihood of a response differ
between groups (Chapters 13 and 14}, regarding
each replicate as zero or not-zerc, and a compari-
son of the response between groups, using only
those replicates in which a response occurred.

Homogeneity of variances

Tests of hypotheses in linear models assume that
the variance in the response variable is the same
at each level, or combination of levels, of the pre-
dictor variables. This is a more important assump-
tion than normality although the analyses are
more robust if sample sizes are equal. If the
response variable has a normal distribution, then
unequal variances will probably be due to a few
unusual values, especially if sample sizes are
small. If the response variable has a lognormal or
Poisson distribution, then we would expect a rela-
tionship between the mean (expected or predicted
values from the linear model} and unequal vari-
ances are related to the underlying distribution.
Transformations that improve normality will also
usually improve homogeneity of variances.

There are formal tests for variance homogen-
eity, such as an Fratio test before a t test. Our
reluctance to recommend such tests has already
been discussed in Chapter 3 and also applies to
the use of Cochran’s, Bartlett's or Levene's tests
before an ANOVA model (Chapter 8). Less formal,
but more useful, checks include side-by-side bax-
plots for multiple groups, which allow a check of
homogeneity of spread of samples (Figure 4.3,
Figure 4.5). Note that plots of residuals from the
model against predicted values are also valuable
exploratory checks (see Chapters 5 and 8).
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Linearity

Parametric correlation and linear regression
analyses are based on straight-line relationships
between variables. The simplest way of checking
whether your data are likely to meet this assump-
tion is to examine a scatterplot of the two vari-
ables, or a SPLOM for more than two variables.
Figure 5.17(a) illustrates how a scatterplot was
able to show a nonlinear relationship between
number of species of invertebrates and area of
mussel clumps on a rocky shore. Smoothing func-
tions through the data can also reveal nonlinear
relationships. We will discuss diagnostics for
detecting nonlinearity further in Chapter 5.

Independence

This assumption basically implies that all the
observations should be independent of each
other, both within and between groups. The most
common situation where this assumption is not
met is when data are recorded in a time sequence.
For experimental designs, there are modifications
of standard analyses of variance when the same
experimental unit is observed under different
treatments or times (Chapters 10 and 11). We will
discuss independence in more detail for each type
of analysis in later chapters.

4.3 | Transforming data

We indicated in the previous section that transfor-
mation of data to a different scale of measure-
ment can be a solution to distributional
assumptions, as well as related problems with var-
iance homogeneity and linearity. In this section,
we will elaborate on the nature and application of
data transformations.

The justification for transforming data to dif
ferent scales before data analysis is based, at least
in part, on the appreciation that the scales of
measurement we use are often arbitrary. For
example, many measurements we take are based
on a decimal system. This is probably related to
the number of digits we have on our hands; char-
acters from the Simpsons would probably
measure everything in units of base eight! Sokal &
Rohlf (1995) point out that linear (arithmetic)

scale of measurement we comimonly use can be
viewed in the same way. For example, we might
measure the length of an object in centimeters
but we could just as easily measure the length in
log units, such as log centimeters. In fact, we
could do so directly just by altering the scale on
our measuring device, like using a slide ruler
instead of a normal linear ruler.

Surprisingly, transformations are quite
common for measurements we encounter in
everyday life. Sometimes, these transformations
simply change the zero value, i.e. adding a con-
stant. Slightly more complex transformations
may change the zero value but also rescale the
measurements by a constant value, eg. the
change in temperature units from Fahrenheit to
Celsius. Such transformations are linear, in that
the relationship between the original variable
and the transformed variable is a perfect straight
line, Statistical tests of null hypotheses will be
identical, in most cases, for the untransformed
and the transformed data.

More commonly in data analysis, particularly
in biology, are transformations that change the
data in a nonlinear fashion. The most common
transformation is the log transformation, where
the transformed data are simply the logs (to any
base) of the original data. The log transformation,
while nenlinear, is monotonic, ie. the order of
data values after transformation is the same as
before. A log-transformed scale is often the
default scale for commonly used measurements.
For example, pH is simply the log of the concentra-
tion of H* ions, and most cameras measure aper-
ture as fstops, with each increase in f
representing a halving of the amount of light
reaching the film, i.e. a log, scale.

There are at least five aims of data transforma-
tions for statistical analyses, especially for linear
models:

* to make the data and the model error terms
closer to a normal distribution (i.e. to make the
distribution of the data symmetricalj,

« to reduce any relationship between the mean
and the variance (i.e. to improve homogeneity
of variances), often as a result of improving
normality,

TRANSFORMING DATA
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your data, the null hypothesis
becomes “mean log-growth
does not vary with density”,
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« to reduce the influence of outliers, especially
when they are at one end of a distribution,

» to improve linearity in regression analyses,
and

« to make effects that are multiplicative on the
raw scale additive on a transformed scale, i.e.
to reduce the size of interaction effects
(Chapters 6 and 9).

The most common use of transformations in
biology is to help the data meet the distributional
and variance assumptions required for linear
models. Emerson (1991), Sokal & Rohlf (1995) and
Tabachnick & Fidell (1996) provide excellent
descriptions and justification of transformations.
These authors are reassuring to those who are
uncomfortable about the idea of transforming
their data, feeling that they are “fiddling” the
data to increase the chance of getting a significant
result. A decision to transform, however, is always
made before the analysis is done.

Remember that after any transformation, you
must recheck your data to ensure the transforma-
tion improved the distribution of the data (or at
least didn’t make it any worse!). Sometimes, log or
square root transformations can skew data just as
severely in the opposite direction and produce
new outliers!

A transformation is really changing your
response variable and therefore your formal
null hypothesis. You might hypothesize that
growth of plants varies with density, and formal-
ize that as the H, that the mean growth of plants
at high density equals the mean growth at
low density. If you are forced to log-transform

1 or you might say that in the
4 .
first case, growth is defined as
mg of weight gained, whereas
after log-transforming, growth is the log-mg
weight gained.

4.3.1 Transformations and distributional
assumptions
The most common type of transformation useful
for biological data (especially counts or measure-
ments) is the power transformation (Emerson
1991, Neter et al. 1996), which transforms Y to YF,
where p is greater than zero. For data with right
skew, the square root (V) transformation, where
p=0.5,1s applicable, particularly for data that are
counts {Poisson distributed) and the variance is
related to the mean. Cube roots (p=0.33), fourth
roots {p=0.25), etc., will be increasingly effective
for data that are increasingly skewed; fourth root
transformations are commonly used for abun-
dance data in ecology when there are lots of zeros
and a few large values (Figure 4.8). For very skewed
data, a reciprocal transformation can help,
although interpretation is a little difficult
because then order of values is reversed.
Transforming data to logarithms (the base is
irrelevant although base 10 logs are more familiar
to readers) will also make positively skewed distri-
butions more symmetrical (Keene 1995; Figure
4.9), especially when the mean is related to the
standard deviation. Such a distribution is termed
lognormal because it can be made normal by log
transforming the values. Use log (Y +¢) where ¢ is
an appropriate constant if there are zeros in the
data set because you can’t take the log of zero.
Some people use the smallest possible value for
their variable as a constant, others use an arbi-
trarily small number, such as 0.001 or, most
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and box plots for concentrations of
Cl- for 39 sites from forested
watersheds in the Catskill
Mountains in New York State:

{a) untransformed and
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TN ENLE Distribution of
percentage caver of the alga
Hormeosira banksii in quadrats at
Point Nepean: {a} untransformed
(raw) and (b) arcsin transformed. (M
Keough & G. Quinn, unpublished 10k
data.)

commonly, 1. Berry (1987}
pointed out that different
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values of ¢ can produce differ- © 20 40 60

ent results in ANOVA tests and
recommended using a value of
¢ that makes the distribution of the residuals as
symmetrical as possible (based on skewness and
kurtosis of the residuals).

If skewness is actually negative, i.e. the distri-
bution has a long left tail, Tabachnick & Fidell
{1996) suggested reflecting the variable before
transforming. Reflection simply involves creating
a constant by adding one to the largest value in
the sample and then subtracting each observation
from this constant.

These transformations can be considered part
of the Box-Cox family of transformations:

A

1
when A#0 (4.1)

log(Y) when A=0 {4.2)

When A=1, we have no change to the distribu-
tion, when A=10.5 we have the square root trans-
formation, and when A=-1 we have the
reciprocal transformation, etc. (Keene 1995, Sokal

Y% cover

B0 100 g9 0.5 1.0 15
% cover (arcsin)

& Rohlf 1995). The Box—-Cox family of transforma-
tions can also be used to find the best transforma-
tion. in terms of normality and homogeneity of
variance, by an iterative process that selects a
value of A that maximizes a loglikelihood func
tion (Sokal & Rohlf 1995).

When data are percentages or proportions,
they are bounded at 0% and 100%. Power transfor-
mations don’t work very well for these data
because they change each end of the distribution
differently (Emerson 1991). One common
approach is to use the angular transformation,
specifically the arcsin transformation. With the
data expressed as proportions, then transform Y
to sin~1(V'Y), and the result is shown in Figure
4.10. It is most effective if Y is close to zero or one,
and has little effect on mid-range proportions.

Finally, we should mention the rank transfor-
mation, which converts the observations to ranks,
as described in Chapter 3 for non-parametric tests.
The rank transformation is different from the
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other transformations discussed here because it is
pounded by one and 7, where ft is the sample size.
This is an extreme transformation, as it results in
equal differences (one unit, except for ties)
between every pair of observations in this ranked
set, regardless of their absolute difference. It
therefore results in the greatest loss of informa-
tion of all the monotonic transformations.

For common linear models (regressions and
ANQVAs), transformations will often improve nor-
mality and homogeneity of variances and reduce
the influence of outliers. If unequal variances and
outliers are a result of non-normality (e.g. skewed
distributions), as is often the case with biological
data, then transformation (to log or square root
for skewed data) will improve all three at once.

4.3.2 Transformations and linearity
Transformations can also be used to improve line-
arity of relationships between two variables and
thus make linear regression models more appro-
priate. For example, allometric relationships with
body size have a better linear fit after one or both
variables are log-transformed. Note that nonlin-
ear relationships might be better investigated
with a nonlinear model, especially one that has a
strong theoretical justification.

4.3.3 Transformations and additivity

Transformations also affect the way we measure
effects in linear models. For example, let’s say we
were measuring the effect of an experimental
treatment compared to a control at two different
times. If the means of our control groups are dif-
ferent at each time, how we measure the effect of
the treatment is important. Some very artificial
data are provided in Table 4.1 to illustrate the
point. At Time 1, the treatment changes the mean
value of our response variable from 10 to 5 units, a
decrease of 5 units. At Time 2 the change is from 50
to 25 units, a change of 25 units. On the raw scale
of measurement, the effects of the treatments are
very different, but in percentage terms, the effects
are actually identical with both showing a 30%
reduction. Biologically, which is the most mean-
ingful measure of effect, a change in raw scale ora
change in percentage scale? In many cases, the per-
tentage change might be more biologically rele-
vant and we would want our analysis to conclude

Table 4.1 | Means for treatment and control
" groups for an experiment conducted at two times.
- Artificial data and arbitrary units used.

Log-
Untransformed  transformed
Time | Time2 Time | Time 2
Control 10 50 [.000 1.699
Treatment 5 25 0699 1.398

that the treatment effects are the same at the two
times. Transforming the data to a log scale
achieves this (Table 4.1).

Interpretation of interaction terms in more
complex linear models (Chapter 9) can also be
affected by the scale on which data are measured.
Transforming data to reduce interactions may be
useful if you are only interested in main effects or
you are using a model that assumes no interaction
(e.g. some randomized blocks models; Chapter 10).
Log-transformed data may better reflect the
underlying nature and interpretation of an inter-
action term.

4.4 | Standardizations

Another change we can make to the values of our
variable is to standardize them in relation to each
other. If we are including two or more variables in
an analysis, such as a regression analysis or a more
complex multivariate analysis, then converting
all the variables to a similar scale is often impor-
tant before they are included in the analysis. A
number of different standardizations are pos-
sible. Centering a variable simply changes the var-
iable so it has a mean of zero:

Y=y,-y
This is sometimes called translation (Legendre &
Legendre 1998).

Variables can also be altered so they range
from zero (minimum) to one (maximum}.
Legendre & Legendre (1998) describe two ways of
achieving this:

¥i andy = ¥i ~ Ymin

max Ymax ~ Ymin

(4.3)

¥= (4.4)
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The latter is called ranging and both methods are
particularly useful as standardizations of abun-
dance data before multivariate analyses that
examine dissimilarities between sampling units
in terms of species composition (Chapter 15).
Changing a variable so it has a mean of zero
and a standard deviation {and variance) of one is
often termed standardization:
=2 (45)
5
The standardized values are also called z scores
and represent the values of the variable from a
normal distribution with a mean of zero and a
standard deviation of one {Chapter 2}.

45 | Outliers

Outliers {or unusual values) are values of a vari-
able that lie outside the usual range of that vari-
able. They can seriously affect the results of
analyses. There are two aspects in dealing with
outliers (i) identifying them, and (ii) dealing with
them. There are formal tests for detecting outliers,
which assume that the observations are normally
distributed. Dixon’s Q test examines the difference
between the outlier and the next closest observa-
tion relative to the overall range of the data (Miller
1993, Sokal & Rohlf 1995), although such tests
have difficulties when there are multiple outliers.
For some linear models (e.g. linear regression),
Cook’s D statistic indicates the influence of each
observation on the result of the analysis (Chapter
5). Qutliers are often easier to detect with EDA
methods. For example, boxplots will highlight
unusually large or small values, plots of residuals
from linear models reveal observations a long way
from the fitted model, as will scatterplots with an
appropriate smoothing function.

Once you identify outliers, you should first
check to make sure they are not a mistake, such as
an error typing in your data or in writing values
down. They often show up as impossible values,
e.g.a 3 m ant, a blood pressure that would result
in an animal exploding, etc. If you can classify an
outlier as a mistake, it should be deleted.

The second kind of outlier can occur if
something unusual happened to that particular

observation. Perhaps the tissue preparation took
longer than usual or an experimental enclosure
was placed in an unusual physical location. In this
case, you may have had a priori cause to be suspi-
cious of that value. It is important to keep detailed
notes of your experiments, to identify potential
outliers. If you were suspicious of this observation
a priori, you may be able to delete such an outlier.

In other cases, you may simply have an anom-
alous value. Although evolutionary biologists
might make their reputations from rare variants,
they are an unfortunate fact of life for the rest of
us. If you have no reason to suspect an outlier as
being a mistake, there are two options. First, you
can re-run the analysis without the outlier(s) to
see how much they influence the outcome of the
analysis. If the conclusions are altered, then you
are in trouble and should try and determine why
those values are so different. Perhaps you are
unwittingly counting two very similar species, or
have a batch of laboratory animals that came from
very different sources. Sometimes thinking about
why particular observations are outliers can stim-
ulate new research questions. Second, use statisti-
cal techniques that are robust to outliers, e.g. for
simple analyses, rankbased tests can provide
some protection (Chapter 3). Don't forget that out-
liers may be a result of a very skewed underlying
distribution and transformations will often make
the distribution more symmetrical and bring out-
liers more in line with the rest of the sample.

It is crucial that outliers only be deleted when
you have a priori reasons to do so - dropping obser-
vations just because they are messy or reduce the
chance of getting a significant result is unethical,
to say the least. The other unacceptable behaviour
is to run the analysis and then go back and look
for outliers to remove if the analysis is not signifi-
cant.

4.6 | Censored and missing data

4.6.1 Missing data

A common occurrence in biology is that, despite
careful field or laboratory work, we might end up
with samples that are missing observations that
were originally planned to be collected. It is very
important to distinguish between missing values
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and zerc values. The former are observations
where we did not record a value for a variable (e.g.
there was no response from an experimental unit)
or where we did record a value that went subse-
quently missing (e.g. the observation was lost).
The latter are recorded observations where the
value of the variable was zero, such as the absence
of an organism when we are recording counts.
Zero values are real data and do not represent a
problem in data analysis except that distribu-
rional assumptions might be harder to meet and
some transformations do not deal with zeros (e.g.
logs). Missing cbservations can cause great diffi-
culties although these problems are much more
severe for multivariate data sets and we will
describe methods for handling missing observa-
tions in those circumstances in Chapter 15. Note
that these methods will be relevant for linear
models with multiple continuous predictor vari-
ables (multiple regression models; Chapter 6).

For univariate analyses described in Chapter 3
and in subsequent chapters on linear models with
categorical predictor variables {ANOVA models),
the main difficulty with missing observations is
that they might result in unequal sample sizes
between the two or more groups that we wish to
compare. These are termed unbalanced data. We
emphasized in Chapter 3 that the results of [ tests
comparing two population means are much more
sensitive to assumptions about normality and var-
iance homogeneity when sample sizes are
unequal. There are three general approaches to
handling such missing values. First is to do
nothing because linear model analyses can easily
handle unequal sample sizes. You need to choose
which sum-of-squares to use in factorial models
(Chapter 9) and also to check the assumptions of
the analyses carefully (Sections 4.2.1, Chapters 3, 8,
etc.). There are also difficulties with estimation of
variance components (Chapter 8). Second is to
delete observations from all samples so that the
sample size is equal across groups. It is difficult to
recommend this conservative approach; it wastes
data and sample sizes in biology are often small, so
that power is a real consideration. Third, we can
substitute (impute) replacement values for the
missing observations. These replacement values
might be simply the mean of the remaining values,
although these methods resultin underestimation

of the variances and standard errors of the esti-
mates of parameters based on these imputed
values, i.e. our estimates will be artificially more
precise. More complex imputation methods are
available for multivariate data sets (Chapter 153).

Our preferred option is to do nothing and
analyze the data with unequal sample sizes.
However, equal sample sizes make data analysis
and interpretation much easier, so every effort
must be made during the design and execution
stages to achieve this balance.

4.6.2 Censored (truncated) data

A problem related to missing data is that of cen-
sored or truncated data, where some of the obser-
vations in our data set have values but others are
simply recorded as less than or greater than a par-
ticular value, or between two values. Clearly we
have some information about a censored value
independently of the other values whereas we
have no information about a missing wvalue.
Censored data in biology occur most often in two
types of situation.

When we are measuring the concentration of
some substance in the environment {e.g. air or
water quality monitoring), our field and labora-
tory analytical equipment will have limits to its
sensitivity. Sometimes we might only be able to
record the level of a substance as being below a
detection limit (BDL), the smallest concentration
we are able to record. For example, in their study
of chemical characteristics of 39 streams in the
Catskill Mountains in New York State (see worked
example in Chapter 2, Section 4.1.1), Lovett e al.
(2000} recorded the concentration of ammonium
(NH,*). Over the caurse of the three years, 38% of
the values of ammonium concentration were
below their detection limit of 1.1 pmol 17'. Data
that are below some detection limit are termed
left censored. Right censoring is also possible, e.g.
counts of organisms in a sampling unit might be
integers up to 100 but larger numbers are simply
recorded as >100. Left censoring of air and water
quality data has been the focus in the literature
{Akritas et al. 1994). When the detection limit is
fixed in advance, such as when we know the limits
of our equipment, and the number of observa-
tions occurring below this limit is random, then
we have Type [ censoring,
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The second situation in which censored data
are common is time-to-event, survival or failure-
time analysis (Fox 1993, Lindsey & Ryan 1598). In
these studies, sampling or experimental units are
observed at regular intervals and we usually only
know that an event occurred {e.g. response of
patients in a clinical trial, flowering of plants or
germination of seeds, etc.) after the last recording.
These data are nearly always right censored but
since the observation is actually somewhere in a
time interval, the phrase interval-censored is
often used. Sometimes our variable of interest
might be the time between two events occurring,
e.g. the first introduction of an exotic species to a
system and the first loss of a native species. Both
events will often be interval-censored, i.e. we only
know when each occurred within an interval, and
such data are termed doubly censored. Doubly
censored data are more common in medicine and
clinical trials than in general biclogical research.
Unfortunately, the area of survival analysis is
beyond the scope of this book (but see Andersen &
Keiding 1996, Fox 1993).

The methods for dealing with censored data
are related to those for dealing with missing data.
We will only provide a brief mention here and
recommend Akritas el al. {1994) for a good intro-
duction to the literature for left-censored environ-
mental data.

Estimation of mean and variance

Three methods have been proposed for dealing
with censored, especially left-censored, data when
the aim is to estimate parameters of a single pop-
ulation.

The first is simple substitution, where the
detection limit, half the detection limit (as used
by Lovett et al. 2000 for their ammonium data) or
zero are substituted for the censored data. A less
common alternative is to assume a distribution
(e.g. normal or uniform) for the values below the
detection limit and substitute random data from
the distribution. Parameters are estimated from
the complete data set, although these estimates
will be biased and the extent of the bias depends
on the actual values of the censored observations,
which, of course, we do nnot know. As with missing
data, simple substitution is not recommended.

Parametric methods assume a mnormal

distribution and wuse maximum likelihood
methods to estimate parameters, based primarily
on the non-censored data but incorporating the
size of the censored and non<ensored compo-
nents of the sample (Newman et al. 1989). The MJ,
estimates can also be used to infill the censored
data (Akritas et al. 1994). These ML estimates are
biased but usually more precise than other
methods; restricted ML (REML; see Chapter 8)
methods are also available that reduce the bias,
There are more robust parametric methods, often
based on order statistics {Chapter 2} where the cen-
sored values are infilled from predicted values
from a regression through a normal or lognormal
probability plot fitted to the ordered data. These
methods are termed normal or lognormal prob-
ability regressions (Akritas et al. 1994) or regres-
sions on expected order statistics (Newman et al.
1989). We have to assume that the censored values
are extensions of the same distribution as the
uncensored values. The simulations of Newman ¢
al.(1989)indicated that ML estimates are best wlien
distributional assumptions are met, otherwise the
probability regression method should be used.

Comparing two or more populations

There is some consensus in the literature that
non-parametric, rank-based, tests are most appro-
priate for hypothesis testing with censored data.
Millard & Deveral (1988} compared twelve rank
tests for comparing two populations based on
sample data with single censoring and multiple
censoring (the detection limit varies between
groups). For tests like the Mann-Whitney-
Wilcoxon {Chapter 3), values below the detection
limit are given the same tied rank. Millard &
Deverel (1988) recommended score tests (linear
rank tests) for comparing two populations,
whereas Akritas et al. (1994) preferred a form of
the robust Theil-Sen regression (Sprent 1993; see
also Chapter 5) in which the predictor variable
defines the two groups. For more than two groups,
multiple pairwise tests, with a suitable correction
for multiple testing (Chapter 3), are probably the
simplest approach.

Akritas et al. (1994) also describe regression
methods for censored data. For survival data, pro-
portional hazards models can be used. For left-
censored data, various non-parametric regression
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' gna]yses (Chapter 5) are possible, with a form of

the Theil-Sen method being the simplest.

-4_,7 General issues and hints for

analysis

4.7.1 General issues

« Graphical analysis of the data should be the
first step in every analysis. Besides allowing
you to assess the assumptions of your planned
analysis, it allows you to get familiar with your
data.

* Many current statistical packages emphasize
exploratory data analysis, and make it easy to
produce boxplots, residual plots, etc.

+ Initial graphical analysis is also very valuable
for identifying outliers, which can have a great
influence on your analyses.

¢« Transformations are routinely used to improve
the fit of biclogical data to the assumptions of
the planned statistical analyses, especially
linear models.

* Data transformations should be monotonic, so
that the order of the observations for a
variable does not change.



