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Introduction

Biologists and environmental scientists today
must contend with the demands of keeping up
with their primary field of specialization, and at
the same time ensuring that their set of profes-
sional tools is current. Those toeols may include
topics as diverse as molecular genetics, sediment
chemistry, and small-scale hydrodynamics, but
one tool that is common and central to most of
us is an understanding of experimental design
and data analysis, and the decisions that we
make as a result of our data analysis determine
our future research directions or environmental
management. With the advent of powerful
desktop computers, we can now do complex ana-
lyses that in previous years were available only to
those with an initiation into the wonders of early
mainframe statistical programs, or compuler pro-
gramming languages, or those with the time for
laborious hand calculations. In past years, those
statistical tools determined the range of sam-
pling programs and analyses that we were
willing to attempt. Now that we can do much
more complex analyses, we can examine data in
more sophisticated ways. This power comes at a
cost because we now collect data with complex
underlying statistical models, and, therefore, we
need to be familiar with the potential and limita-
tions of a much greater range of statistical
approaches.

With any field of science, there are particular
approaches that are mere common than others.
Texts written for one field will not necessarily
cover the most common needs of another field,
and we felt that the needs of most commeon bicl-
ogists and environmental scientists of our

acquaintance were not covered by any one partic-
ular text.

Afundamental step in becoming familiar with
data collection and analysis is to understand the
philosophical viewpoint and basic tools that
underiie what we do. We begin by describing our
approach to scientific method. Because our aim is
to cover some complex techniques, we do not
describe introductory statistical methods in
much detail. That task is a separate one, and has
been done very well by a wide range of authors. We
therefore provide only an overview or refresher of
some basic philosophical and statistical concepts.
‘We strongly urge you to read the first few chapters
of a good introductory statistics or biostatistics
book (you can’t do much better than Sokal & Rohlf
1995) before working through this chapter.

I.1 | Scientific method

An appreciation of the philosophical bases for the
way we do our scientific research is an important
prelude to the rest of this book (see Chalmers
1999, Gower 1997, O’Hear 1989). There are many
valuable discussions of scientific philosophy from
a biological context and we particularly recom-
mend Ford (2000), James & McCulloch (1985),
Loehle (1987) and Underwcod (1990, 1991).
Maxwell & Delaney (1990} provide an overview
from a behavioral sciences viewpoint and the first
two chapters of Hilborn & Mangel (1997) empha-
size alternatives to the Popperian approach in sit-
uations where experimental tests of hypotheses
are simply not possible.
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Early attempts to develop a philosophy of sci-
entific logic, mainly due to Francis Bacon and
John Stuart Mill, were based around the principle
of induction, whereby sufficient numbers of con-
firmatory observations and no contradictory
observations allow us to conclude that a theory or
law is true (Gower 1997). The logical problems
with inductive reasoning are discussed in every
text on the philosophy of science, in particular
that no amount of confirmatory observations can
ever prove a theory. An alternative approach, and
also the most commonly used scientific method
in modern biological sciences literature, employs
deductive reasoning, the process of deriving
explanations or predictions from laws or theories.
Karl Popper {1968, 1969) formalized this as the
hypothetico-deductive approach, based around
the principle of falsificationism, the doctrine
whereby theories (or hypotheses derived from
them) are disproved because proof is logically
impossible. An hypothesis is falsifiable if there
exists a logically possible observation that is
inconsistent with it. Note that in many scientific
investigations, a description of pattern and induc-
tive reasoning, to develop models and hypotheses
(Mentis 1988), is followed bya deductive process in
which we critically test our hypotheses.

Underwood {1550, 1991) outlined the steps
involved in a falsificationist test. We will illustrate
these steps with an example from the ecological
literature, a study of bioluminescence in dinoflag-
ellates by Abrahams & Townsend (1993).

I.1.1 Pattern description

The process starts with observation{s) of a pattern
or departure from a pattern in nature.
Underwood (1990} also called these puzzles or
problems. The guantitative and robust descrip-
tion of patterns is, therefore, a crucial part of the
scientific process and is sometimes termed an
observational study (Manly 1992). While we
strongly advocate experimental methods in
biology, experimental tests of hypotheses derived
from poorly collected and interpreted observa-
tional data will be of little use.

In our example, Abrahams & Townsend (1993)
observed that dinoflagellates bioluminesce when
the water they are in is disturbed. The next step is
to explain these observations.

1.1.2 Models

The explanation of an observed pattern is referred
to as a model or theory (Ford 2000}, which is a
series of statements {or formulae) that explains
whiy the observations have occurred. Model devel-
opment is also what Peters (1991} referred to as the
synthetic or private phase of the scientific
method, where the perceived problem interacts
with insight, existing theory. belief and previous
observations to produce a set of competing
models. This phase is clearly inductive and
involves developing theories from observations
{Chalmers 1999}, the exploratery process of
hypothesis formulation.

James & McCulloch (1985}, while emphasizing
the importance of formulating models in science,
distinguished different types of models. Verbal
models are non-mathematical explanations of
how nature works. Most biologists have some idea
of how a process or system under investigation
operates and this idea drives the investigation. It
is often useful to formalize that idea as a concep-
tual verbal model, as this might identify impor-
tant components of a system that need to be
included in the model. Verbal models can be
quantified in mathematical terms as either
empitic models or theoretic models. These models
usually relate a response or dependent variable to
one or more predictor or independent variables.
We can envisage from our biological understand-
ing of a process that the response variable might
depend on, or be affected by, the predictor vari-
ables.

Empiric models are mathematical descrip-
tions of relationships resulting from processes
rather than the processes themselves, e.g. equa-
tions describing the relationship between metab-
olism (response) and body mass (predictor) or
species number (response)} and island area (first
predictor) and island age (second predictor).
Empiric models are usually statistical models
(Hilborn & Mangel 1997) and are used to describe
a relationship between response and predictor
variables. Much of this book is based on fitting
statistical models to observed data.

Theoretic models, in contrast, are used to
study processes, e.g. spatial variation in abun-
dance of intertidal snails is caused by variations
in settlement of larvae, or each outbreak of
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Mediterranean fruit fly in California is caused by
anew colonization event (Hilborn & Mangel 1997).
In many cases, we will have a theoretic, or scien-
tific, model that we can re-express as a statistical
model. For example, island biogeography theory
suggests that the number of species on an island
is related to its area. We might express this scien-
tific model as a linear statistical relationship
between species number and island area and eval-
uate it based on data from a range of islands of dif
ferent sizes. Both empirical and theoretic models
can be used for prediction, although the general-
ity of predictions will usually be greater for theor-
etic models.

The scientific model proposed to explain biolu-
minescence in dinoflagellates was the “burglar
alarm model”, whereby dinoflagellates biolu-
minesce to attract predators of copepods, which
eat the dinoflagellates. The remaining steps in the
process are designed to test or evaluate a particu-
lar model.

[.1.3 Hypotheses and tests

‘We can make a prediction or predictions deduced
from our model or theory; these predictions are
called research (or logical) hypotheses. If a partic-
ular model is correct, we would predict specific
observations under a new set of circumstances.
This is what Peters (1991) termed the analytic,
public or Popperian phase of the scientific
method, where we use critical or formal tests to
evaluate models by falsifying hypotheses. Ford
(2000) distinguished three meanings of the term
“hypothesis”. We will use it in Ford’s (2000} sense
of a statement that is tested by investigation,
experimentally if possible. in contrast to a model
or theory and also in contrast to a postulate, a new
or unexplored idea.

One of the difficulties with this stage in the
process is deciding which models (and subsequent
hypotheses} should be given research priority.
There will often be many competing models and,
with limited budgets and time, the choice of
which models to evaluate is an important one.
Popper originally suggested that scientists should
test those hypotheses that are most easily falsified
by appropriate tests. Tests of theories or models
using hypotheses with high empirical content
and which make improbable predictions are what

Popper called severe tests, although that term has
been redefined by Mayo (1996} as a test that is
likely to reveal a specific error if it exists (e.g. deci-
sion errors in statistical hypothesis testing — see
Chapter 3). Underwood (1990, 1991) argued that it
is usually difficult to decide which hypotheses are
most easily refuted and proposed that competing
models are best separated when their hypotheses
are the most distinctive, i.e. they predict very dif-
ferent results under similar conditions. There are
other ways of deciding which hypothesis to test,
more related to the sociology of science. Some
hypotheses may be relatively trivial, or you may
have a good idea what the results can be. Testing
that hypothesis may be most likely to produce
a statistically significant {see Chapter 3), and.
unfortunately therefore, a publishable result.
Alternatively, a hypothesis may be novel or
require a complex mechanism that you think
unlikely. That result might be more exciting to the
general scientific community, and you might
decide that, although the hypothesis is harder to
test, you're willing to gamble on the fame, money,
or personal satisfaction that would result from
such a result.

Philosophers have long recognized that proof
of a theory or its derived hypothesis is logically
impossible, because all observations related to the
hypothesis must be made. Chalmers (1999; see
also Underwood 1991) provided the clever
example of the long history of observations in
Europe that swans were white. Only by observing
all swans everywhere could we “prove” that all
swans are white. The fact that a single observation
contrary to the hypothesis could disprove it was
clearly illustrated by the discovery of black swans
in Australia.

The need for disproof dictates the next step in
the process of a falsificationist test. We specify a
null hypothesis that includes all possibilities
except the prediction in the hypothesis. It is
much simpler logically to disprove a null hypoth-
esis. The null hypothesis in the dinoflagellate
example was that bioluminesence by dinoflagel-
lates would have no effect on, or would decrease,
the mortality rate of copepods grazing on dino-
flagellates. Note that this null hypothesis
includes all possibilities except the one specified
in the hypothesis.
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So, the final phase in the process is the experi-
mental test of the hypothesis. If the null hypothe-
sis is rejected, the logical {or research) hypothesis,
and therefore the model, is supported. The model
should then be refined and improved, perhaps
making it predict outcomes for different spatial
or temporal scales, other species or other new sit-
uations. If the null hypothesis is not rejected, then
it should be retained and the hypothesis, and the
model from which it is derived, are incorrect. We
then start the process again, although the statisti-
cal decision not to reject a null hypothesis is more
problematic (Chapter 3).

The hypothesis in the study by Abrahams &
Townsend (1993) was that bioluminesence would
increase the mortality rate of copepods grazing on
dinoflagellates. Abrahams & Townsend (1993)
tested their hypothesis by comparing the mortal-
ity rate of copepods in jars containing biolumi-
nescing dinoflagellates, copepods and one fish
{copepod predator) with control jars containing
non-bicluminescing dinoflagellates, copepods
and one fish. The result was that the mortality
rate of copepods was greater when feeding on bio-
luminescing dinoflagellates than when feeding
on non-bioluminescing dinoflagellates. Therefore
the null hypothesis was rejected and the logical
hypothesis and burglar alarm model was sup-
ported.

|.1.4 Alternatives to falsification

While the Popperian philosophy of falstficationist
tests has been very influential on the scientific
method, especially in biology, at least two other
viewpoints need to be considered. First, Thomas
Kuhn (1970) argued that much of science is
carried out within an accepted paradigm or
framework in which scientists refine the theories
but do not really challenge the paradigm. Falsified
hypotheses do not usually result in rejection of
the over-arching paradigm but simply its enhance-
ment. This “normal science™ is punctuated by
occasional scientific revolutions that have as
much to do with psychology and sociology as
empirical information that is counter to the pre-
vailing paradigm {((’’Hear 1989). These scientific
revolutions result in (and from) changes in
methods, objectives and personnel {Ford 2000).
Kuhn's arguments have been described as relativ-

istic because there are often no objective criteria
by which existing paradigms and theories are
toppled and replaced by alternatives.

Second, Imre Lakatos (1978) was not con-
vinced that Popper’s ideas of falsification and
severe tests really reflected the practical applica-
tion of science and that individual decisions
about falsifying hypotheses were risky and arbi-
trary (Mayo 1996). Lakatos suggested we should
develop scientific research programs that consist
of two components: a “hard core” of theories
that are rarely challenged and a protective belt of
auxiliary theories that are often tested and
replaced if alternatives are better at predicting
outcomes (Mayo 1996). One of the contrasts
between the ideas of Popper and Lakatos that is
important from the statistical perspective is the
latter’s ability to deal with multiple competing
hypotheses more elegantly than Popper's severe
tests of individual hypotheses (Hilborn & Mangel
1997).

An important issue for the Popperian philoso-
phy is corrcboration. The falsificationist test
makes it clear what to do when an hypothesis is
rejected after a severe test but it is less clear what
the next step should be when an hypothesis passes
a severe test. Popper argued that a theory, and its
derived hypothesis, that has passed repeated
severe testing has been corroborated. However,
because of his difficulties with inductive think-
ing, he viewed corroboration as simply a measure
of the past performance of a model, rather an
indication of how well it might predict in other
circumstances (Mayo 1996, O’Hear 1989). This is
frustrating because we clearly want to be able to
use models that have passed testing to make pre-
dictions under new circumstances (Peters 1991).
While detailed discussion of the problem of cor-
roberation is beyond the scope of this book (see
Mayo 1996}, the issue suggests two further areas of
debate. First, there appears to be a role for both
induction and deduction in the scientific method,
as both have obvious strengths and weaknesses
and most biological research cannot help but use
both in practice. Second, formal corroboration of
hypotheses may require each to be allocated some
measure of the probability that each is true or
false, i.e. some measure of evidence in favor or
against each hypothesis. This goes to the heart of
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one of the most longstanding and vigorous
debates in statistics, that between frequentists
and Bayesians (Section 1.4 and Chapter 3).

Ford {2000) provides a provocative and thor-
ough evaluation of the Kuhnian, Lakatosian and
Popperian approaches to the scientific method,
with examples from the ecological sciences.

I.1.5 Role of statistical analysis

The application of statistics is important through-
out the process just described. First, the descrip-
tion and detection of patterns must be done in a
rigorous manner. We want to be able to detect gra-
dients in space and time and develop models that
explain these patterns. We also want to be confi-
dent in our estimates of the parameters in these
statistical models. Second, the design and analysis
of experimental tests of hypotheses are crucial. It
is important to remember at this stage that the
research hypothesis (and its complement, the nuil
hypothesis) derived from a model is not the same
as the statistical hypothesis (James & McCulloch
1985); indeed, Underwood (1990) has pointed out
the logical problems that arise when the research
hypothesis is identical to the statistical hypothe-
sis. Statistical hypotheses are framed in terms of
population parameters and represent tests of the
predictions of the research hypotheses {James &
McCulloch 1985). We will discuss the process of
testing statistical hypotheses in Chapter 3. Finally,
we need to present our results, from both the
descriptive sampling and from tests of hypothe-
ses, in an informative and concise manner. This
will include graphical methods, which can also be
important for exploring data and checking
assumptions of statistical procedures.

Because science is done by real people, there
are aspects of human psychology that can influ-
ence the way science proceeds. Ford (2000) and
Loehle {1987) have summarized many of these in
an ecological context, including confirmation
bias {the tendency for scientists to confirm their
own theories or ignore contradictory evidence)
and theory tenacity (a strong commitment to
basic assumptions because of some emotional or
personal investment in the underlying ideas).
These psychological aspects can produce biases in
a given discipline that have important implica-
tions for our subsequent discussions on research

design and data analysis. For example, there is a
tendency in biology (and most sciences) to only
publish positive {or statistically significant)
results, raising issues about statistical hypothesis
testing and meta-analysis (Chapter 3) and power of
tests {Chapter 7). In addition, successful tests of
hypotheses rely on well-designed experiments
and we will consider issues such as confounding
and replication in Chapter 7.

1.2 | Experiments and other tests

Platt {1964) emphasized the importance of experi-
ments that critically distinguish between alterna-
tive models and their derived hypotheses when he
described the process of strong inference:

+ devise alternative hypotheses,

 devise a crucial experiment (or several experi-
ments) each of which will exclude one or more
of the hypotheses,

* carry out the experiment(s) carefully to obtain
a “clean” result, and

« recycle the procedure with new hypotheses to
refine the possibilities (i.e. hypotheses) that
remain.

Crucial to Platt’s {1964) approach was the idea of
multiple competing hypotheses and tests to dis-
tinguish between these. What nature should
these tests take?

In the dinoflagellate example above, the
crucial test of the hypothesis involved a manipu-
lative experiment based on sound principles of
experimental design (Chapter 7). Such manipula-
tions provide the strongest inference about our
hypotheses and models because we can assess the
effects of causal factors on our response variable
separately from other factors. James & McCulloch
{1985) emphasized that testing biological models,
and their subsequent hypotheses, does not occur
by simply seeing if their predictions are metin an
observational context, although such results offer
support for an hypothesis. Along with James &
McCulloch (1985), Scheiner (1993), Underwood
{1990), Werner (1998), and many others, we argue
strongly that manipulative experiments are the
best way to properly distinguish between biologi-
cal models.

o
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There are at least two costs to this strong infer-
ence from manipulative experiments. First,
experiments nearly always involve some artificial
manipulation of nature. The most extreme form
of this is when experiments testing some natural
process are conducted in the laboratory. Even field
experiments will often use artificial structures or
mechanisms to implement the manipulation. For
example, mesocosms (moderate sized enclosures)
are often used to investigate processes happening
in large water bodies, although there is evidence
from work on lakes that issues related to the
small-scale of mesocosms may restrict generaliza-
tion to whole lakes (Carpenter 1996; see also
Resetarits & Fauth 1998). Second, the larger the
spatial and temporal scales of the process being
investigated, the more difficult it is to meet the
guidelines for good experimental design. For
example, manipulations of entire ecosystems are
crucial for our understanding of the role of
natural and anthropogenic disturbances to these
systems, especially since natural resource agen-
cies have to manage such systems at this large
spatial scale (Carpenter et al. 1995). Replication
and randomization {two characteristics regarded
as important for sensible interpretation of experi-
ments - see Chapter 7} are usually not possible at
large scales and novel approaches have been devel-
oped to interpret such experiments (Carpenter
1990). The problems of scale and the generality of
conclusions from smallerscale manipulative
experiments are challenging issues for experi-
mental biologists (Dunham & Beaupre 1998).

The testing approach on which the methods in
this book are based relies on making predictions
from our hypothesis and seeing if those predic-
tions apply when observed in a new setting, i.e.
with data that were not used to derive the model
originally. Ideally, this new setting is experimen-
tal at scales relevant for the hypothesis. but this is
not always possible. Clearly, there must be addi-
tional ways of testing between competing models
and their derived hypotheses. Otherwise, disci-
plines in which experimental manipulation is dif-
ficult for practical or ethical reasons, such as
meteorclogy, evelutionary biclogy, fisheries
ecology, etc,, could make no scientific progress,
The alternative is to predict from our
modelsfhypotheses in new settings that are not

experimentally derived. Hilborn & Mangel (1997),
while arguing for experimental studies in ecology
where possible, emphasize the approach of “con-
fronting” competing models {or hypotheses) with
observational data by assessing how well the data
meet the predictions of the model.

Often, the new setting in which we test the
predictions of our model may provide us with a
contrast of some factor, similar to what we may
have set up had we been able to do a manipula-
tive experiment. For example, we may never be
able to (nor want tol) test the hypothesis that
wildfire in old-growth forests affects populations
of forest birds with a manipulative experiment at
a realistic spatial scale. However, comparisons of
bird populations in forests that have burnt natu-
rally with those that haven’t provide a test of the
hypothesis. Unfortunately, a test based on such a
natural “experiment” (sensu Underwood 1990) is
weaker inference than a real manipulative
experiment because we can never separate the
effects of fire from other pre-existing differences
between the forests that might also affect bird
populations. Assessments of effects of human
activities (“environmental impact assessment”)
are often comparisons of this kind because we
can rarely set up a human impact in a truly
experimental manner {Downes et al. 2001). Well-
designed cobservational (sampling) programs can
provide a refutationist test of a null hypothesis
(Underwood 1991) by evaluating whether predic-
tions hold, although they cannot demonstrate
causality.

While our bias in favor of manipulative experi-
ments is obvious, we hope that we do not appear
too dogmatic. Experiments potentially provide
the strongest inference about competing hypoth-
eses, but their generality may also be constrained
by their artificial nature and limitations of spatial
and temporal scale. Testing hypotheses against
new observaticnal data provides weaker distinc-
tions between competing hypotheses and the infe-
rential strength of such methods can be improved
by combining them with other forms of evidence
(anecdotal, mathematical modeling, correlations
etc. - see Downes et al. 2001, Hilborn & Mangel
1997, McArdle 1996). In practice, most biological
investigations will include both observational
and experimental approaches. Rigorous and sen-
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sible statistical analyses will be relevant at all
stages of the investigation.

|.3 | Data, observations and
variables

In biology, data usually consist of a collection of
ohservations or objects. These observations are
usually sampling units (e.g. quadrats) or experi-
mental units (e.g. individual organisms, aquaria,
etc.) and a set of these observations should repre-
sent a sample from a clearly defined population
{all possible observations in which we are inter-
ested). The "actual property measured by the indi-
vidual observations” {Sokal & Rohlf 1995, p. 9}, e.g.
length, number of individuals, pH, etc., is called a
variable. A random variable (which we will denote
as Y, with y being any value of Y) is simply a vari-
able whose values are not known for certain
before a sample is taken, i.e. the observed values
of a random variable are the results of a random
experiment (the sampling process). The set of all
possible outcomes of the experiment, e.g. all the
possible values of a random variable, is called the
sample space. Most variables we deal with in
biology are random variables, although predictor
variables in models might be fixed in advance and
therefore not random. There are two broad catego-
ries of random variables: (i) discrete random vari-
ables can only take certain, usually integer,
values, e.g. the number of cells in a tissue section
or number of plants in a forest plot, and (ii) con-
tinuous random variables, which take any value,
e.g. measurements like length, weight, salinity,
blood pressure etc, Kleinbaum et al. (1997) distin-
guish these in terms of “gappiness” - discrete var-
iables have gaps between observations and
continuous variables have no gaps between obser-
vations.

The distinction between discrete and centinu-
ous variables is not always a clear dichotomy; the
number of erganisms in a sample of mud from a
local estuary can take a very large range of values
but, of course, must be an integer so is actually a
discrete variable. Nonetheless, the distinction
between discrete and continuous variables is
important, especially when trying to measure
uncertainty and probability.

1.4 | Probability

The single most important characteristic of bio-
logical data is their uncertainty. For example, if
we take two samples, each consisting of the same
number of observations, from a population and
estimate the mean for some variable, the two
means will almost certainly be different, despite
the samples coming from the same population.
Hilborn & Mangel (1997) proposed two general
causes why the two means might be different, i.e.
two causes of uncertainty in the expected value of
the population. Process uncertainty results from
the true population mean being different when
the second sample was taken compared with the
first. Such temporal changes in biotic variables,
even over very short time scales, are common in
ecological systems. Observation uncertainty
results from sampling error; the mean value in a
sample is simply an imperfect estimate of the
mean value in the pepulation {all the possible
observations) and, because of natural variability
between observations, different samples will
nearly always produce different means.
Observation uncertainty can also result from
measurement error, where the measuring device
we are using is imperfect. For many biological var-
iables, natural variability is so great that we rarely
worry about measurement error, although this
might not be the case when the variable is meas-
ured using some complex piece of equipment
prone to large malfunctions.

In most statistical analyses, we view uncer-
tainty in terms of probabilities and understand-
ing probability is crucial to understanding
modern applied statistics. We will only briefly
introduce probability here, particularly as it is
very important for how we interpret statistical
tests of hypotheses. Very readable introductions
can be found in Antelman (1997), Barnett {1999),
Harrison & Tamaschke (1984) and Hays (1994);
from a biological viewpoint in Sokal & Rohlf
(1995] and Hilborn & Mangel (1997); and from a
philosophical perspective in Mayo (1996).

We usually talk about probabilities in terms of
events; the probability of event A occurring is
written P{A). Probabilities can be between zero
and one; if P{A) equals zero. then the event is
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impossible; if P{A) equals one, then the event is
certain. As a simple example, and one that is used
in nearly every introductory statistics book,
imagine the toss of a coin. Most of us would state
that the probability of heads is 0.5, but what do we
really mean by that statement? The classical inter-
pretation of probability is that it is the relative fre-
quency of an event that we would expect in the
long run, or in a long sequence of identical trials.
In the coin tossing example, the probability of
heads being 0.5 is interpreted as the expected pro-
portion of heads in a long sequence of tosses.
Problems with this long-run frequency interpreta-
tion of probability include defining what is meant
by identical trials and the many situations in
which uncertainty has no sensible long-Tun fre-
quency interpretation, e.g. probability of a horse
winning a particular race, probability of it raining
tomorrow (Antelman 1997). The longrun fre-
quency interpretation is actually the classical sta-
tistical interpretation of probabilities (termed the
frequentist approach) and is the interpretation we
must place on confidence intervals {Chapter 2)
and P values from statistical tests (Chapter 3).

The alternative way of interpreting probabil-
ities is much more subjective and is based on a
“degree of belief” about whether an event will
occur. It is basically an attempt at quantification
of an opinion and includes two slightly different
approaches - logical probability developed by
Carnap and Jeffreys and subjective probability
pioneered by Savage, the latter being a measure of
probability specific to the person deriving it. The
opinion on which the measure of probability is
based may be derived from previous observations,
theoretical considerations, knowledge of the par-
ticular event under consideration, etc. This
approach to probability has been criticized
because of its subjective nature but it has been
widely applied in the development of prior prob-
abilities in the Bayseian approach to statistical
analysis (see below and Chapters 2 and 3).

We will introduce some of the basic rules of
probability using a simple biological example
with a dichotomous outcome - eutrophication in
lakes (e.g. Carpenter et al. 1998). Let P(A) be the
probability that a lake will go eutrophic. Then
P{~-A} equals one minus P{A), i.e. the probability of
not A is one minus the probability of A. In our

example, the probability that the fake will not go
eutrophic is one minus the probability that it will
go eutrophic.

Now consider the P(B), the probability that
there will be an increase in nutrient input into
the lake. The joint probability of A and B is:

P(AUB) = P{A) + P(B)— P(ANB) (1.1}

i.e. the probability that A or B occur [MAU B)] is the
probability of A plus the probability of B minus
the probability of A and B both occurring [P(A M B)].
In our example, the probability that the lake will
go eutrophic or that there will be an increase in
nutrient input equals the probability that the lake
will go eutrophic plus the probability that the
lake will receive increased nutrients minus the
probability that the lake will go eutrophic and
receive increased nutrients.

These simple rules lead on to conditional prob-
abilities, which are very important in practice.
The conditional probability of A, given B, is:

PA|B}=P{AN B)[P(B) {1.2)

i.e. the probability that A occurs, given that B
occurs, equals the probability of A and B both
occurring divided by the probability of B occur-
ring. In our example, the probability that the lake
will go eutrophic given that it receives increased
nutrient input equals the probability that it goes
eutrophic and receives increased nutrients
divided by the probability that it receives
increased nutrients,

We can combine these rules to develop
another way of expressing conditional probability
- Bayes Theorem (named after the eighteenth-
century English mathematician, Thomas Bayes):

P(B|A)P(A)

PAIBI=55 [A)P(A) + P(B| ~A)P( ~A)

(1.3)

This formula allows us to assess the probability of
an event A in the light of new information, B. Let's
define some terms and then show how this some-
what daunting formula can be useful in practice.
P(A) is termed the prior probability of A - it is the
probability of A prior to any new information
(about B). In our example, it is our probability of a
lake going eutrophic, calculated before knowing
anything about nutrient inputs, possibly deter-
mined from previous studies on eutrophication in
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lakes. P(B|A) is the likelihood of B being observed,
given that A did occur [a similar interpretation
exists for P(B|~A)]. The likelihood of a model or
hypothesis or event is simply the probability of
observing some data assuming the model or
hypothesis is true or assuming the event occurs.
In our example, P(B|4) is the likelihood of seeing
a raised level of nutrients, given that the lake has
gone eutrophic (A). Finally, P{A|B) is the posterior
probability of A, the probability of A after making
the observations about B, the probability of a lake
going eutrophic after incorporating the informa-
tion about nutrient input. This is what we are
after with a Bayesian analysis, the modification of
prior information to posterior information based
on a likelihood (Ellison 1996).

Bayes Theorem tells us how probabilities might
change based on previous evidence. It also relates
two forms of conditional probabilities - the prob-
ability of A given B to the probability of B given A.
Berry (1996) described this as relating inverse
probabilities. Note that, although our simple
example used an event (A) that had only two pos-
sible outcomes, Bayes formula can also be used for
events that have multiple possible outcomes.

In practice, Bayes Theorem is used for estimat-
ing parameters of populations and testing hypoth-
eses about those parameters. Equation 1.3 can be
simplified considerably {Berry & Stangl 1996,
Ellison 1996):

P(dataj#)P(8)

P{A|data)= P(data)

(14)
where # is a parameter to be estimated or an
hypothesis to be evaluated, P(6) is the “uncondi-
tional” prior probability of ¢ being a particular
value, P(data| ¢} is the likelihood of observing the
data if @ is that value, P(data) is the "uncondi-
tional” probability of observing the data and is
used to ensure the area under the probability dis-
tribution of 6 equals one (termed “normaliza-
tion”), and (6| data) is the posterior prabability of
# conditional on the data being observed. This
formula can be re-expressed in English as:

posterior probability e likelihood X
prior probability (1.5)

While we don’t advocate a Bayesian philosophy in
this book, it is important for biclogists to be aware

of the approach and to consider it as an alterna-
tive way of dealing with conditional probabilities.
We will consider the Bayesian approach to estima-
tion in Chapter 2 and to hypothesis testing in
Chapter 3.

1.5 | Probability distributions

A random variable will have an associated prob-
ability distribution where different values of the
variable are on the horizontal axis and the rela-
tive probabilities of the possible values of the var-
iable (the sample space) are on the vertical axis.
For discrete variables, the probability distribu-
tion will comprise a measurable probability for
each outcome, e.g. 0.5 for heads and 0.5 for tails
in a coin toss, 0.167 for each one of the six sides
of a fair die. The sum of these individual probabil-
ities for independent events equals one.
Continuous variables are not restricted to inte-
gers or any specific values so there are an infinite
number of possible cutcomes. The probability dis-
tribution of a continuous variable (Figure 1.1) is
often termed a probability density function (pdf)
where the vertical axis is the probability density
of the variable [fiy)], a rate measuring the prob-
ability per unit of the variable at any particular

_value of the variable (Antelman 1997). We usually

talk about the probability associated with a range
of values, represented by the area under the prob-
ability distribution curve between the two
extremes of the range. This area is determined
from the integral of the probability density from
the lower to the upper value, with the distribu-
tion usually normalized so that the total prob-
ability under the curve equals one. Note that the
probability of any particular value of a continu-
ous random variable is zero because the area
under the curve for a single value is zero
(Kleinbaum et al. 1997) - this is important when
we consider the interpretation of probability dis-
tributions in statistical hypothesis testing
{Chapter 3).

In many of the statistical analyses described in
this book, we are dealing with two or more vari-
ables and our statistical models will often have
more than one parameter. Then we need to switch
from single probability distributions to joint
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Probability
distributions for random variables
following four common
distributions. For the Poisson
distribution, we show the P(y)
distributien for a rare event and a
commen one, showing the shift of
the distribution from skewed to

Normal

Exponential

approximately symmetrical.

probability distributions
where probabilities are meas-
ured, not as areas under a
single curve, but volumes P(y)
under a more complex distri-
bution. A common joint pdfis

Pocisson

P Low rate
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Lognormail

the bivariate normal distribu-
tion, to be introduced in
Chapter 5.

Probability distributions nearly always refer to
the distribution of variables in one or more popu-
lations. The expected value of a random variable
[E(Y)]is simply the mean (u) of its probability distri-
bution. The expected value is an important concept
in applied statistics — most modeling procedures
are trying to model the expected value of a random
response variable. The mean is a measure of the
center of a distribution - other measures include
the median (the middle value) and the mode (the
most commeon value). It is also important to be able
to measure the spread of a disiribution and the
most common measures are based on deviations
from the center, e.g. the variance is measured as
the sum of squared deviations from the mean. We
will discuss means and variances, and other meas-
ures of the center and spread of distributions, in
maore detail in Chapter 2.

[.5.1 Distributions for variables
Most statistical procedures rely on knowing the
probability distribution of the variable {or the
error terms from a statistical model) we are ana-
lyzing. There are many probability distributions
that we can define mathematically {Evans et al.
2000} and some of these adequately describe the
distributions of variables in biology. Let’s consider
continuous variables first.

The normal (also termed Gaussian) distribu-
tion is a symmetrical probability distribution

4 4

with a characteristic bell-shape (Figure 1.1). It is
defined as:

1 2
= ~(y—uff2a? 1,
)= (16)

where f{y} is the probability density of any value y
of Y. Note that the normal distribution can be
defined simply by the mean {(;1) and the variance
(6%), which are independent of each other. All
other terms in the equation are constants, A
normal distribution is often abbreviated to
N(Y:u.o). Since there are infinitely many possible
combinations of mean and variance, there is an
infinite number of possible normal distributions.
The standard normal distribution (z distribution)
is a normal distribution with a mean of zero and
a variance of one. The normal distribution is the
most important probability distribution for data
analysis; most commonly used statistical proce-
dures in biology (e.g. linear regression, analysis of
variance) assume that the variables being ana-
lyzed {or the deviations from a fitted model)
follow a normal distribution.

The normal distribution is a symmetrical prob-
ability distribution, but continuous variables can
have non-symmetrical distributions. Biological
variables commonly have a positively skewed dis-
tribution, i.e. one with a long right tail {Figure
1.1}. One skewed distribution is the lognormal dis-
tribution, which means that the logarithm of the
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variable is normally distributed (suggesting a
simple transformation to normality ~ see Chapter
4). Measurement variables in biclogy that cannot
be less than zero {e.g. length, weight, etc.) often
follow lognormal distributions. In skewed distri-
butions like the lognormal, there is a positive rela-
tionship between the mean and the variance.

There are some other probability distributions
for continuous variables that are occasionally
used in specific circumstances. The exponential
distribution (Figure 1.1) is another skewed distri-
burion that often applies when the variable is the
time to the first occurrence of an event (Fox 1993,
Harrison & Tamaschke 1984), such as in failure
time analysis. This is a single parameter (A) distri-
bution with the following probability density
function:

fy)=2re™¥ (1.7)

where 1/A is the mean time to first occurrence. Fox
{1993) provided some ecological examples.

The exponential and normal distributions are
members of the larger family of exponential dis-
tributions that can be used as error distributions
for a variety of linear models (Chapter 13). Other
members of this family include gamma distribu-
tion for continuous variables and the binomial
and Poisson (see below) for discrete variables.

Two other probability distributions for contin-
uous variables are also encountered (albeit rarely)
in biology. The two-parameter Weibull distribu-
tion varies between positively skewed and
symmetrical depending on parameter values,
although versicns with three or more parameters
are described {Evans et al. 2000). This distribution
is mainly used for modeling failure rates and
times. The beta distribution has two parameters
and its shape can range from U to J to symmetri-
cal. The beta distribution is commonly used as a
prior probability distribution for dichotomous
variables in Bayesian analyses (Evans et al. 2000),

There are also probability distributions for dis-
crete variables. If we toss a coin, there are two pos-
sible outcomes - heads or tails. Processes with
only two possible outcomes are common in
biology, e.g. animals in an experiment can either
live or die, a particular species of tree can be
either present or absent from samples from a
forest, A process that can only have one of two

cutcomes is sometimes called a Bernoulli trial
and we often call the two possible outcomes
success and failure. We will only consider a sta-
tionary Bernoulli trial, which is one where the
probability of success is the same for each trial, i.e.
the trials are independent.

The probability distribution of the number of
successes in 7 independent Bernoulli trials is
called the binomial distribution, a very important
probability distribution in biology:

nl
P{y:r)=m1f(l—ﬂ)" v (1.8]
where P(y =r] is the probability of a particular
value (y} of the randoin variable (Y) being r suc-
cesses out of n trials, n is the number of trials and
w is the probability of a success. Note that n, the
number of trials is fixed, and therefore the value
of a binomial random variable cannot exceed n.
The binomial distribution can be used to calculate
probabilities for different numbers of successes
out of n trials, given a known probability of
success on any individual trial. Itis also important
as an error distribution for modeling variables
with binary outcomes using logistic regression
(Chapter 13). A generalization of the binomial dis-
tribution to when there are more than two pos
sible outcomes is the multinomial distribution,
which is the joint probability distribution of
multiple outcomes from n fixed trials.

Another very important probability distribu-
tion for discrete variables is the Poisson distribu-
tion, which usually describes variables repre-
senting the number of (usually rare) occurrences
of a particular event in an interval of time or
space, ie. counts. For example, the number of
organisms in a plot, the number of cells in a
microscepe field of view, the number of seeds
taken by a bird per minute. The probability distri-
bution of a Poisson variable is;

e it
r!

Ky=r= (1.9)
where P(y=r) is the probability that the number
of occurrences of an event (y) equals an integer
value(r=9,1,2..), pis the mean (and variance) of
the number of occurrences. A Poisson variable can
take any integer value between zero and infinity
because the number of trials, in contrast to the
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binomial and the multinomial, is not fixed. One of
the characteristics of a Poisson distribution is that
the mean (u} equals the variance {¢?). For small
values of w, the Poisson distribution is positively
skewed but once p is greater than about five, the
distribution is symmeftrical (Figure 1.1).

The Poisson distribution has a wide range of
applications in biology. It actually describes the
occurrence of random events in space {or time)
and has been used to examine whether organisms
have random distributions in nature (Ludwig &
Reynolds 1988). It also has wide application in
many applied statistical procedures, e.g. counts in
cells in contingency tables are often assumed to
be Poisson random variables and therefore a
Poisson probability distribution is used for the
error terms in log-linear modeling of contingency
tables (Chapter 14).

A simple example might help in understand-
ing the difference between the binomial and the
Poisson distributions. If we know the average
number of seedlings of mountain ash trees
(Eucalyptus regnans) per plot in some habitat, we
can use the Poisson distribution to model the
probability of different numbers of seedlings per
plot, assuming independent sampling. The bino-
mial distribution would be used if we wished to
model the number of plots with seedlings outof a
fixed number of plots, knowing the probability of
a plot having a seedling.

Another useful probability distribution for
counts is the negative binomial (White & Bennetts
1996). It is defined by two parameters, the mean
and a dispersion parameter, which measures the
degree of “clumping” in the distribution. White &
Bennetts (1996) pointed out that the negative
binomial has two potential advantages over the
Poisson for representing skewed distributions of
counts of organisms: (i) the mean does not have to
equal the variance, and (ii) independence of trials
(samples) is not required (see also Chapter 13).

These probability distributions are very impor-
tant in data analysis. We can test whether a partic-
ular variable follows one of these distributions by
calculating the expected frequencies and compar-
ing them to observed frequencies with a goodness-
ofit test (Chapter 14). More importantly, we can
model the expected value of a response variable
|E(Y)] against a range of predictor (independent}

variabies if we know the probability distribution
of our response variable.

1.5.2 Distributions for statistics

The remaining theoretical distributions to
examine are those used for determining probabil-
ities of sample statistics, or modifications thereof.
These distributions are used extensively for esti-
mation and hypothesis testing. Four particularly
important ones are as follows.

1. The z or normal distribution represents
the probability distribution of a random variable
that is the ratio of the difference between a
sample statistic and its population value to the
standard deviation of the population statistic
(Figure 1.2}.

2. Student's t distribution (Figure 1.2)
represents the probability distribution of
a random variable that is the ratio of the
difference between a sample statistic and its
population value to the standard deviation of
the distribution of the sample statistic. The ¢
distribution is a symmetrical distribution very
similar to a normal distribution, bounded by
infinity in both directions. Its shape becomes
more similar with increasing sample size
(Figure 1.2). We can convert a single sample
statistic to a t value and use the ¢ distribution
to determine the probability of obtaining that
tvalue (or one smaller or larger) for a specified
value of the population parameter (Chapters 2
and 3).

3. ¥* (chi-square) distribution (Figure 1.2)
represents the probability distribution of a
variable that is the square of values from a
standard normal distribution (Section 1.5).
Values from a y* distribution are bounded by
zero and infinity. Variances have a y* distribu-
tion so this distribution is used for interval
estimation of population variances (Chapter 2).
We can also use the »? distribution to determine
the probability of obtaining a sample difference
{or one smaller or larger) between observed
values and those predicted by a model (Chapters
13 and 14}.

4. F distribution (Figure 1.2) represents the
probability distribution of a variable that is the
ratio of two independent x? variables, each
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distributions for four common
statistics. For the t, y% and F
distributions, we show distributions
G for three or four different degrees
of freedom (2 to d, in increasing
order), to show how the shapes of

these distributions change,

P(y)

divided by its df (degrees of freedom) (Hays 1994).
Because variances are distributed as y*, the F
distribution is used for testing hypotheses about
ratios of variances. Values from the F distribu-
tion are bounded by zero and infinity. We can
use the F distribution to determine the prob-
ability of obtaining a sample variance ratio (or
one larger) for a specified value of the true ratio
between variances (Chapters 5 onwards).

All four distributions have mathematical deri-
vations that are too complex to be of much inter-
est to biologists (see Evans et al. 2000). However,

these distributions are tabled in many textbooks
and programmed into most statistical software,
so probabilities of obtaining values from each,
within a specific range, can be determined. These
distributions are used to represent the probability
distributions of the sample statistics {z, t, ¥* or F)
that we would expect from repeated random sam-
pling from a population or populations. Different
versions of each distribution are used depending
on the degrees of freedom associated with the
sample or sampies (see Box 2.1 and Figure 1.2).




Chapter 2

Estimation

2.1 | Samples and populations

Biologists usually wish to make inferences (draw
conclusions) about a population, which is defined
as the collection of all the possible observations of
interest. Note that this is a statistical population,
not a biological population (see below). The collec-
tion of observations we take from the population
is called a sample and the number of observations
in the sample is called the sample size (usually
given the symbol n). Measured characteristics of
the sample are called statistics (e.g. sample mean)
and characteristics of the population are called
parameters (e.g. population mean).

The basic method of collecting the observa-
tions in a sample is called simple random sam-
pling. This is where any observation has the same
probability of being collected, e.g. giving every rat
in a holding pen a number and choosing a sample
of rats to use in an exi;)eriment with a random
number table. We rarely sample truly randomly in
biology, often relying on haphazard sampling for
practical reasons. The aim is always to sample in a
manner that doesn't create a bias in favour of any
observation being selected. Other types of sam-
pling that take into account heterogeneity in the
population {e.g. siratified sampling) are described
in Chapter 7. Nearly all applied statistical proce-
dures that are concerned with using samples to
make inferences (i.e. draw conclusions) about pop-
ulations assume some form of random sampling.
If the sampling is not random. then we are never
sure quite what population is represented by our
sample. When random sampling from clearly

defined populations is not possible, then interpre-
tation of standard methods of estimation
becomes more difficult.

Populations must be defined at the start of any
study and this definition should include the
spatial and temporal limits to the population and
hence the spatial and temporal limits to our infer-
ence. Our formal statistical inference is restricted
to these limits. For example, if we sample from a
population of animals at a certain location in

December 1996, then our inference is restricted to |

that location in December 1996. We cannot infer
what the population might be like at any other
time or in any other place, although we can spec-
ulate or make predictions.

One of the reasons why classical statistics has
such an important role in the biological sciences,
particularly agriculture, botany, ecology, zoology,
etc., is that we can often define a population about
which we wish to make inferences and from
which we can sample randomly (or at least hap-
hazardly). Sometimes the statistical population is
also a biological population (a group of individu-
als of the same species). The reality of random
sampling makes biology a little different from
other disciplines that use statistical analyses for
inference. For example, it is often difficult for
psychologists or epidemiologists to sample ran-
domly because they have to deal with whatever
subjects or patients are available (or volunteer!).

The main reason for sampling randomly from
a clearly defined population is to use sample sta-
tistics (e.g. sample mean or variance) to estimate
population parameters of interest (e.g. population
mean oOr variance). The population parameters
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cannot be measured directly because the popula-
tions are usually too large, i.e. they contain too
many observations for practical measurement. It
is important to remember that population param-
eters are usually considered to be fixed, but
unknown, values so they are not random variables
and do not have probability distributions. Note
that this contrasts with the Bayesian approach
where population parameters are viewed as
random variables (Section 2.6). Sample statistics
are random variables, because their values

- depend on the outcome of the sampling experi-

ment, and therefore they do have probability dis-
tributions, called sampling distributions.

What are we after when we estimate popula-
tion parameters? A good estimator of a population
parameter should have the following characteris-
tics (Harrison & Tamaschke 1984, Hays 1994).

» It should be unbiased, meaning that the
expected value of the samiple statistic (the mean
of its probability distribution) should equal the
parameter. Repeated samples should produce
estimates which do not consistently under- or
over-estimate the population parameter.

It should be consistent so as the sample size
increases then the estimator will get closer to
the population parameter. Once the sample
includes the whole population, the sample
statistic will obviously equal the population
parameter, by definition.

It should be efficient, meaning it has the
lowest variance among all competing esti-
mators. For example, the sample mean is a
more efficient estimator of the population
mean of a variable with a normal probability
distribution than the sample median, despite
the two statistics being numerically equivalent.

There are two broad types of estimation:

1. point estimates provide a single vajue
which estimates a population parameter, and

2. interval estimates provide a range of values
that might include the parameter with a known
probability, e.g. confidence intervals.

Later in this chapter we discuss different

- methods of estimating parameters, but, for now,

let’s consider some common population parame-
ters and their point estimates.

2.2 | Common parameters and
statistics

Consider a population of observations of the vari-
able ¥ measured on all N sampling units in the
population. We take a random sample of n obser-
vations (y,. ¥,. ¥....¥,....y,) from the population.
We usually would like information about two
aspects of the population, some measure of loca-
tion or central tendency (i.e. where is the middle
of the population?) and some measure of the
spread (i.e, how different are the observations in
the population?). Common estimates of parame-
ters of location and spread are given in Table 2.1
and illustrated in Box 2.2.

2.2.1 Center (location) of distribution

Hstimators for the center of a distribution can be
classified into three general classes, or broad types
(Huber 1981, Jackson 1986). First are Lestimators,
based on the sampte data being ordered from small-
est to largest (order statistics) and then forming a
linear combination of weighted order statistics, The
sample mean (¥), which is an unbiased estimator of
the population mean (g), is an L-estimator where
each observation is weighted by 1/n (Table 2.1).
Other common L-estimators include the following.

» The median is the middle measurement of a
set of data. Arrange the data in order of
magnitude (i.e. ranks) and weight all
observations except the middle one by zero.
The median is an unbiased estimator of the
population mean for normal distributions,
is a better estimator of the center of skewed
distributions and is more resistant to outliers
(extreme values very different to the rest of the
sample; see Chapter 4).

+ The trimmed mean is the mean calculated
after omitting a proportion (commonly 5%) of
the highest (and lowest) observations, usually
to deal with outliers.

+ The Winsorized mean is determined as for
trimmed means except the omitted obser-

vations are replaced by the nearest remaining
value,

Second are M-estimators, where the weight-
ings given to the different observations change
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Table 2.1 | Common population parameters and saniple statistics

Parameter Statistic Formula
2}’;
Mean () " -f?
Median Sample median Yin+ 112 if n odd
(oa ™ Yyt M2 it even
S =9
Variance (o) 2 Z, e
“ (=)
Standard deviation (o) s zl o
Median absolute deviation (MAD) Sample MAD median( |y, — median|]
s
Coeflicient of variation {CV) Sample CV }—_/X 100
. s
Standard error of ¥ () 5; ~

95% confidence interval for g

_ S - )
Y~ haose-11\/, U=y n

gradually from the middle of the sample and
incorporate a measure of variability in the estima-
tion procedure. They include the Huber M-
estimator and the Hampel M-estimator, which use
different functions to weight the observations.
They are tedious to calculate, requiring iterative
procedures, but maybe useful when outliers are
present because they downweight extreme values.
They are not commonly used but do have a role in
robust regression and ANOVA techniques for ana-
lyzing linear models (regression in Chapter 5 and
ANOVA in Chapter 8).

Finally, R-estimators are based on the ranks of
the observations rather than the observations
themselves and form the basis for many rank
based “non-parametric” tests {Chapter 3), The only
common R-estimator is the Hodges-Lehmann esti-
mator, which is the median of the averages of all
possible pairs of observations.

For data with outliers, the median and
trimmed or Winsorized means are the simplest to
calculate although these and M- and R-estimators
are now commonly available in statistical software.

2.2.2 Spread or variability

Various measures of the spread in a sample are
provided in Table 2.1. The range, which is the dif-
ference between the largest and smallest observa-
tion, is the simplest measure of spread, but there
is no clear link between the sample range and
the population range and, in general, the range
will rise as sample size increases. The sample var-
iance, which estimates the population variance,
is an important measure of variability in many
statistical analyses. The numerator of the
formula is called the sum of squares (58S, the sum
of squared deviations of each observation from
the sample mean) and the variance is the average
of these squared deviations. Note that we might
expect to divide by n to calculate an average, but
then s® consistently underestimates o2 (i.e. it is
biased), so we divide by n—1 to make s an unbi-
ased estimator of o2. The one difficulty with s* is
that its units are the square of the original obser-
vations, e.g. if the observations are lengths in
mm, then the variance is in mm?, an area not a
length.
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95% of observations

T
#=1.960 /i

Flot of normal probability distribution, showing
points bevween which values 95% of all values occur.

The sample standard deviation, which esti-
mates «, the population standard deviation, is the
square root of the variance. In contrast to the var-
iance, the standard deviation is in the same units
as the original observations.

The coefficient of variation {CV) is used to
compare standard deviations between popula-
tions with different means and it provides a
measure of variation that is independent of the
measurement units. The sample coefficient of
variation CV describes the standard deviation as a
percentage of the mean; it estimates the popula-
tion CV.

Some measures of spread that are more robust
to unusual observations include the following.

* The median absolute deviation (MAD) is
less sensitive to outliers than the above
measures and is the sensible measure of
spread to present in association with
medians,

* The interquartile range is the difference
between the first quartile (the observation
which has 0.25 or 25% of the observations
below it) and the third quartile (the observa-
tion which has 0.25 of the observations above
it). It is used in the construction of boxplots
(Chapter 4).

For some of these statistics (especially the
variance and standard deviation), there are

g
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equivalent formulae that can be found in any sta-
tistics textbook that are easier to use with a hand
calculator. We assume that, in practice, biologists
will use statistical software to calculate these sta-
tistics and, since the alternative formulae do not
assist in the understanding of the concepts, we do
not provide them.

2.3 | Standard errors and confidence
intervals for the mean

2.3.1 Normal distributions and the
Central Limit Theorem

Having an estimate of a parameter is only the first
step in estimation. We also need to know how
precise our estimate is. Qur estimator may be the
most precise of all the possible estimators, butifits
value still varies widely under repeated sampling,
it will not be very useful for inference. If repeated
sampling produces an estimator that is very con-
sistent, then it is precise and we can be confident
that it is close to the parameter {(assuming that it
is unbiased), The traditional logic for determining
precision of estimators is well covered in almost
every introductory statistics and biostatistics book
fwe strongly recommend Sokal & Rohlf1995), so we
will describe it only briefly, using normally distrib-
uted variables as an example.

Assume that our sample has come from a
normally distributed population {Figure 2.1). For
any normal distribution, we can easily deter-
mine what proportions of observations in the
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lllustration of the
principle of the Central Limit
Theorem, where repeated samples
with large n from any distribution

A(Y)

will have sample means with a

normal distribution.

population occur within certain distances from
the mean:

= 50% of population falls between w*0.674c
= 95% of population falls between u 1+ 1.960¢
= §9% of population falls between u = 2.576¢.

Therefore, ifwe know gand o, we canwork out these
proportions for any normal distribution. These pro-
portions have beencalculated and tabulated in most
textbooks, but only for the standard normal distri-
bution, which has a mean of zero and a standard
deviation (or variance) of one. To use these tables, we
must be able to transform our sample observations
to their equivalent values in the standard normal
distribution. To do this, we calculate deviations
from the mean in standard deviation units:

=N E (2.1)
o

These deviations are called normal deviates or

standard scores. This z transformation in effect

converts any normal distribution to the standard

normal distribution.

Usually we only deal with a single sample
{with n observations) from a population. If we took
many samples from a population and calculated
all their sample means, we could plot the fre-
quency (probability) distribution of the sample
means (remember that the sample mean is a
random variable). This probability distribution is
called the sampling distribution of the mean and
has three important characteristics.

+ The probability distribution of means of
samples from a normal distribution is also
normally distributed.

Y

« As the sample size increases, the probability
distribution of means of samples from any dis-
tribution will approach a normal distribution.
This result is the basis of the Central Limit
Theorem (Figure 2.2).

« The expected value or mean of the probability
distribution of sample means equals the mean
of the population (u) from which the samples
were taken.

2.3.2 Standard error of the sample mean
If we consider the sample means to have a normal
probability distribution, we can calculate the vari-
ance and standard deviation of the sample means,
just like we could calculate the variance of the
observations in asingle sample. The expected value
of the standard deviation of the sample means is:

(4

%" Vn

where o is the standard deviation of the original
population from which the repeated samples
were taken and n is the size of samples.

We are rarely in the position of having many
samples from the same population, so we esti-
mate the standard deviation of the sample means
from our single sample. The standard deviation. of
the sample means is called the standard error of
the mean:

(2.2)

s
Sizﬁ (2.3)

where s is the sample estimate of the standard
deviation of the original population and n is the
sample size.

STANDARD ERRORS AND CONFIDENCE INTERVALS

The standard error of the mean is telling us
about the variation in our sample mean. It is
termed “error” because it is telling us about the
error in using ¥ to estimate p (Snedecor & Cochran
1989), If the standard error is large, repeated
samples would likely produce very different
means, and the mean of any single sample might
not be close to the true population mean. We
would not have much confidence that any specific
sample mean is a good estimate of the population
mean. If the standard error is small, repeated
samples would likely produce similar means, and
the mean of any single sample is more likely to be
close to the true population mean. Therefore, we
would be quite confident that any specific sample
mean is a good estimate of the population mean.

2.3.3 Confidence intervals for population
mean

In Equation 2.1, we converted any value from a
normal distribution into its equivalent value from
a standard normal distribution, the z score.
Equivalently, we can convert any sample mean
into its equivalent value from a standard normal
distribution of means using:

(2.4)
Iy

where the denominator is simply the standard
deviation of the mean, ofV'n, or standard error.
Because this z score has a normal distribution, we
can determine how confident we are in the sample
mean, i.e. how close it is to the true population
mean (the mean of the distribution of sample
means). We simply determine values in our distri-
bution of sample means between which a given
percentage (often 95% by convention) of means
occlrs, i.e. between which values of {y— p}fa'y. do
95% of values lie? As we showed above, 95% of a
normal distribution falls between p*1.9600, so
95% of sample means fall between p £ 1.960,(1.96
times the standard deviation of the distribution of
sample means, the standard error).

Now we can combine this information to make
a confidence interval for u:

P(§ —1.960,=u=§+1960,} =095 (2.5)

This confidence interval is an interval estimate for
the population mean, although the probability
statement is actually about the interval, not

about the population parameter, which is fixed.
We will discuss the interpretation of confidence
intervals in the next section, The only problem is
that we very rarely know o in practice, so we never
actually know 0,;; we can only estimate the stan-
dard error from s (sample standard deviation).
Our standard normal distribution of sample
means is now the distribution of (y - p)fs;. This is
a random variable called t and it has a probability
distribution that is not quite normal. It follows a
t distribution (Chapter 1), which is flatter and
more spread than a mnormal distribution.
Therefore, we must use the t distribution to calcu-
late confidence intervals for the population mean
in the common situation of not knowing the pop-
ulation standard deviation.

The t distribution (Figure 1.2) is a symmetrical
probability distribution centered around zero
and, like a normal distribution, it can be defined
mathematically. Proportions {probabilities) for a
standard t distribution {with a mean of zero and
standard deviation of one) are tabled in most sta-
tistics books. In contrast to a normal distribution,
however, t has a slightly different distribution
depending on the sample size (well, for mathe-
matical reasons, we define the different t distribu-
tions by n—1, called the degrees of freedom (df}
(see Box 2.1), rather than n). This is because s pro-
vides an imprecise estimate of ¢ if the sample size
is small, increasing in precision as the sample size
increases. When n is large {say >>30), the t distribu-
tion is very similar to a normal distribution
{because our estimate of the standard error based
on s will be very close to the real standard error).
Remember, the z distribution is simply the prob-
ability distribution of (y — p)fer or (¥ — p)for, if we
are dealing with sample means. The t distribution
is simply the probability distribution of (¥ — w)fs,
and there is a different t distribution for each df
(n—1).

The confidence interval (95% or 095} for the
population mean then is:

P~ o iy SHSF Fh g 151 =095  {2.6)

where £, ..., is the value from the ¢ distribution
with n~1 df between which 95% of all t values lie
and s is the standard error of the mean. Note that
the size of the interval will depend on the sample
size and the standard deviation of the sample,

both of which are used to calculate the standard
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Box 2.1 | Explanation of degrees of freedom 'Box 2.2| Worked example of estimation: chemistry of

forested watersheds
Degrees of freedom (df) is one of those terms that biologists use all the time in sta-

tistical analyses but few probably really understand. We will attempt to make it 2
little clearer: The degrees of freedom is simply the number of chservations in our
sample that are “free to vary” when we are estimating the variance (Harrison &
Tamaschke 1984). Since we have already determined the mean, then only n— |
| observations are free to vary hecause knowing the mean and n— | observations,
the last observation is fixed. A simple example — say we have a sample of observa-

“Lovett et @ (2000) studied the chemistry of forested watersheds in the Catskill
‘Mountains in New York State. They chose 39 sites {observations} on first and
,second order streams and measured the concentrations of ten chemical variables
(NO,~ total organic N, total N,NH, ™. dissolved organic C, SO, €I, Ca?* Mg?*,
-H™), averaged over three years, and four watershed variables {(maximum elevation,

tions, with values 3,4 and 5. We know the sample mean (4} and we wish to esti-
rnate the variance. Knowing the mean and one of the observations doesn't tell us
what the other two must be. But if we know the mean and twa of the observa-
tions (e.g. 3 and 4), the final observation is fixed (it must be 5). 5o, knowing the
mean, only two abservations (n— |} are free to vary, As a general rule, the df is the
number of observations minus the number of parameters included in the formula
for the variance (Harrison & Tamaschke |984).

error, and also on the level of confidence we
require {(Box 2.3).

We can use Equation 2.6 to determine confi-
dence intervals for different levels of confidence,
e.g. for 99% confidence intervals, simply use the t
value between which 99% of all ¢ values lie. The
99% confidence interval will be wider than the
95% confidence interval {Box 2.3).

2.3.4 Interpretation of confidence
intervals for population mean

It is very important to remember that we usually
do not consider w a random variable but a fixed,
albeit unknown, parameter and therefore the con-
fidence interval is not a probability statement
about the population mean. We are not saying
there is a 95% probability that u falls within this
specific interval that we have determined from
our sample data; w is fixed, so this confidence
interval we have calculated for a single sample
either contains u or it doesn’t. The probability
associated with confidence intervals is inter-
preted as a long-run frequency, as discussed in
Chapter 1. Different random samples from the
same population will give different confidence
intervals and if we took 100 samples of this size (1),
and calculated the 95% confidence interval from
each sample, 95 of the intervals would contain u
and five wouldn’t. Antelman (1997, p. 375) sum-
marizes a confidence interval succinctly as “
one interval generated by a procedure that will
give correct intervals 95% of the time”.

2.3.5 Standard errors for other statistics
The standard error is simply the standard devia-
tion of the probability distribution of a specific
statistic, such as the mean. We can, however, cal-
culate standard errors for other statistics besides
the mean. Sokal & Rohlf {1995} have listed the for-
mulae for standard errors for many different stat-
istics but noted that they might only apply for
large sample sizes or when the population from
which the sample came was normal. We can use
the methods just described to reliably determine
standard errors for statistics (and confidence
intervals for the associated parameters) from a
range of analyses that assume normality, e.g.
regression coefficients. These statistics, when
divided by their standard error, follow a t distri-
bution and, as such, confidence intervals can
be determined for these statistics (confidence
interval = t X standard error).

‘When we are not sure about the distribution of
a sample statistic, or know that its distribution is
non-normal, then it is probably better to use resam-
pling methods to generate standard errors (Section
2.5). One important exception is the sample vari-
ance, which has a known distribution that is not
normal, i.e. the Central Limit Theorem does not
apply to variances. To calculate confidence inter-
vals for the population variance, we need to use the
chisquare (%) distribution, which is the distribu-
tion of the following random variable:

Xzz(y—u)

= (2.7)

sample elevation, length of stream, watershed area). We will assume that the 39 sites
represent a random sample of possible sites in the central Catskilis and will focus
on point estimation for location and spread of the populations for two variables,
SO,F and (17, and interval estimation for the population mean of these two var-
fables. We also created a modified version of 50,7 where we replaced the largest
vaiue (72.1 pmol 17! at site BWS6) by an extreme value of 200 umot 17! 1o illus-
trate the robustness of various statistics to outliers.

Boxplots (Chapter 4) for both variables are presented in Figure 4.3, Note that
SO,* has a symmetrical distribution whereas CI7 is positively skewed with outli-
ers (values very different from rest of sample). Summary statistics for 50,2 (orig-
inal and modified) and CI™ are presented below.

Estimate SO, Modified SO CI°
Mean 61.92 £5.20 2284
Median 62.10 6210 2050
5% trimmed mean 61.90 6190 20.68
Huber's M-estimate 61.67 61.67 20.21
Hampel's M-estimate 61.85 6162 19.52
Standard deviation 524 2270 12.38
Interquartile range 8.30 830 780
Median absolute 4.30 430 350
deviation

Standard error of 0.84 3.64 1.98
mean

95% confidence 6022-6362 57847256 18.83-25.86

interval for mean

Given the symmetrical distribution of SO_ﬁ’. the mean and median are similar
as expected. In contrast, the mean and the median are different by mare than two
units for CI7, as we would expect for a skewed distribution. The median is a more
reliable estimator of the center of the skewed distribution for 1=, and the various
robust estimates of location {median, 5% trimmed mean, Huber's and Hampel's
M-estimates) all give similar values. The standard deviation for CI~is also affected
by the outliers, and the canfidence intervals are relatively wide.

The modified version of SO,%" also shows the sensitivity of the mean and the
standard deviation to outliers. Of the robust estimators for location, anly Hampel's
M-estimate changes marginally, whereas the mean changes by mare than three units.
Sirnilarly, the standard deviation (and therefore the standard error and 95%
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confidence interval) is much greater for the modified variable, whersas the inter-
quartile range and the median absolute deviation are unaffected by the outlier.

We also calculated bootstrap estimates for the mean and the median of $O 2~
concentrations, based on 1000 baotstrap samples {n=239) with replacement from
the original sample of 39 sites. The bootstrap estimate was the mean of the 1000
bootstrap sample statistics, the bootstrap standard error was the standard devia-
tion of the 1000 bootstrap sample statistics and the 95% confidence interval was
determined from 25th and 975th values of the bootstrap statistics arranged in
ascending order. The two estimates of the mean were almost identical, and although
the standard error was smaller for the usual method, the percentile 5% confidence
interval for the bootstrap methad was narrower: The two estimates for the median
were identical, but the boatstrap method allows us to estimate a standard error and
a confidence interval.

Usual Bootstrap
Mean 6192 6191
Standard error 084 (188
953% confidence interval 60.27-63.62 60.36-63.59
Median 61.72 6172
Standard error MNA |.34
95% confidence interval NA 58.60-63.40

The frequency distributions of the bootstrap means and medians are presented
in Figure 2.4. The distribution of bootstrap means is symmetrical whereas the boot-
strap distribution of medians is skewed. This is cornmontly the case and the confi-
dence interval for the median is not symmetrical arcund the bootstrap estimate.
We also calculated the bias corrected bootstrap confidence intervals, Forty nine
percent of baotstrap means were below the bootstrap estimate of 61.31, so the
bias-correctad confidence interval is basically the same as the standard boctstrap.
Forty four percent of bootstrap medians were below the bootstrap estimate of
6172502, =—=0.151 and (2z,+ 1.96) = 658 and (27, — 1.96) = —2.262. The per-
centiles, from the normal cumulative distribution, are 95.2% (upper) and 1.2%
{lower). However, because so many of the boaotstrap medians were the same value,
these bias-corrected percentiles did not change the confidence intervals.

This is simply the square of the standard z score
discussed above (see also Chapter 1). Because we
square the numerator, x* is always positive,
ranging from zero to «. The )? distribution is a
sampling distribution so, like the random variable
t. there are different probability distributions for
x* for different sample sizes; this is reflected in the
degrees of freedom (n— 1). For small df, the prob-
ability distribution is skewed to the right (Figure
1.2) but it approaches normality as df increases.

Now back to the sample variance. It turns out
that the probability distribution of the sample var-
ianceis a chi-square distribution. Strictly speaking,
(n—1)s?

= (2.8)

is distributed as x? with n—1 df (Hays 1994). We
can rearrange Equation 2.8, using the chi-square
distribution, to determine a confidence interval
for the variance:

P{sz(n—l) sz(nfl]
Xn 1 X?z'l

=0.95 (2.9)

where the lower bound uses the y® value below
which 2.5% of all »* values fall and the upper
bound uses the y? value above which 2.5% of all y?
values fall. Remember the long-run frequency
interpretation of this confidence interval -
repeated sampling would result in confidence
intervals of which 95% would include the true
population variance. Confidence intervals on
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=Box 2.3 | Effect of different sample variances, sample sizes
: and degrees of confidence on confidence interval

for the population mean

‘-We will again use the data from Lovett et al. (2000) an the chemistry of forested
watersheds in the Catskill Mountzins in New York State and focus on interval esti-
‘mation for the mean concentration of SO f’ in all the pessible sites that could have

been sampled.

Original sample

Sample (n = 39) with a mean concentration of $O,%” of 41.52 and s of 5.24. The t
value for 95% confidence intervals with 38 df is 2.02. The 95% confidence interval

for population mean SC,2 is 60.22 — 63,62, ie. 3.40,

Different sample variance

Sample (=39} with & mean concentration of 50,2~ of 61.92 and 5 of 1048 (twice
original). The £ value for $5% confidence intervals with 38 df is 202, The 95% can-

fidence interval for population mean SO 7 is 58.53 — 65.31

e 678 (cf. 340).

So mare variability in population (and sample) results in a wider confidence

interval.

Different sample size

Samnple (0= 20; half orginal) with a mean concentration of 50,7~ of 61 32 and s of
5.24. The t value for 95% confidence intervals with 12 df is 2.09. The 95% confi-
dence interval for population mean SO is 59.47 —~ 6437, .. 4.90 (cf. 3.40).

So a smalier sample size results in wider interval because our estimates of s and

s, are less precise.

Different level of confidence (99%)

sample (1= 39) with & mean concentration of 50,7 of 61.92 and s of 5.24. The t
value for 99% confidence intervals with 38 df is 2.71. The 95% confidence interval
far population mean 5O, is 59.65 — 64.20, ie. 4.55 (cf. 3.40).

S0 requiring a greater level of confidence results in a widsr interval for a given

nands.

variances are very important for the interpreta-
tion of variance components in linear models
(Chapter 8).

2.4 | Methods for estimating
parameters

2.4.1 Maximum likelihood (ML)

A general method for calculating statistics that
estimate specific parameters is called Maximum
Likelihood (ML). The estimates of population
parameters (e.g. the population mean) provided
earlier in this chapter are ML estimates, except for

the variance where we correct the estimate to
reduce bias. The logic of ML estimation is decep-
tively simple. Given a sample of observations from
a population, we find estimates of one (or more)
parameter(s) that maximise the likelihood of
observing those data. To determine maximum
likelihood estimators, we need to appreciate the
likelihood function, which provides the likeli-
hood of the observed data {and therefore our
sample statistic) for all possible values of the
parameter we are trying to estimate. For example,
imagine we have a sample of observations with a
sample mean of 7. The likelihood function, assum-
ing a normal distribution and for a given standard
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MRl Generalized log-

possible parameter values

¥

likelihoed function for estimating a

parameter.

deviation, is the likelihood of
observing the data for all pos-
sible values of u, the popula-
tion mean. In general, for a
parameter &, the likelihood ;
function is:

ion

log-likelihood funct

n
Uy o=TIRy:0)  (210)
i=1

where fly;:6) is the joint prob-
ability distribution of y, and #, l
i.e. the probability distribu- v
tion of Y for possible values of

g. In many common situations, f{y;6) is a normal
probability distribution. The ML estimator of fis
the one that maximizes this likelihood function.
Working with products (II) in Equation 2.10 is
actually difficult in terms of computation so it is
more common te maximize the loglikelihood
function:

L{g)=In [Hﬂy 0]} = é‘,ln[f(yi; )

For example, the ML estimator of ¢ {knowing %
for a given sample is the value of u which maxi-
mises the likelihood of observing the data in the
sample. If we are trying to estimate g from a
normal distribution, then the fiy; ) would be the
equation for the normal distribution, which
depends only on p and ¢*. Eliason (1993} provides
a simple worked example.

The ML estimator can be determined graphi-
cally by simply trying different values of p and
seeing which one maximizes the log-likelihood
function {Figure 2.3). This is very tedious, however,
and it is easier (and more accurate) to use some
simple calculus to determine the value of w that
maximizes the likelihood function. ML estimators
sometimes have exact arithmetical solutions,
such as when estimating means or parameters for
linear models (Chapters 8-12). In contrast, when
analyzing some non-normal distributions, ML
estimators need to be calculated using complex
iterative algorithms (Chapters 13 and 14).

It is important to realize that a likelihood is

(2.11}

I' \ ML estimator

not the same as a probability and the likelihood
function is not a probability distribution (Barnett
1999, Hilborn & Mangel 1997). In a probability dis-
tribution for a random variable, the parameter is
considered fixed and the data are the unknown
variable(s). In a likelihood function, the data are
considered fixed and it is the parameter that
varies across all possible values. However, the like-
lihood of the data given a particular parameter
value is related to the probability of obtaining the
data assuming this particular parameter value
(Hilborn & Mangel 1997).

2.4.2 Ordinary least squares (OLS)

Another general approach to estimating parame-
ters is by ordinary least squares (OLS). The least
squares estimator for a given parameter is the one
that minimizes the sum of the squared differ-
ences between each value in a sample and the
parameter, i.e. minimizes the following function:

n
> Iy~ fier
ITTI;& OLS estimator of u for a given sample is the
value of p which minimises the sum of squared
differences between each value in the sample and
the estimate of g {i.e. Z(y,— 7)). OLS estimators are
usually more straightforward to calculate than
ML estimators, always having exact arithmetical
solutions. The major application of OLS estima-
tion is when we are estimating parameters of
linear models (Chapter 5 onwards), where
Equation 2.12 represents the sum of squared

(2.12)

;
l
1
|
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differences between observed values and those
predicted by the model.

2.4.3 ML vs OLS estimation
Maximum likelihood and ordinary least squares
are niot the only methods for estimating popula-
tion parameters (see Barnett 1999) but they are
the most commonly used for the analyses we will
discuss in this book. Point and interval estimation
using ML relies on distributional assumptions, i-e.
we need to specify a probability distribution for
our variable or for the error terms from our statis-
tical model (see Chapter 5 onwards). When these
assumptions are met, ML estimators are generally
unbiased, for reasonable sample sizes, and they
have minimum variance {i.e, they are precise esti-
mators) compared to other estimators. In contrast,
OLS point estimates require no distributional
assumptions, and OLS estimators are also gener-
ally unbiased and have minimum variance.
However, for interval estimation and hypothesis
testing, OLS estimators have quite restrictive dis-
tributional assumptions related to normality and
patterns of variance.
For most commeon population parameters (e.g.
), the ML and OLS estimators are the same when
the assumptions of QLS are met. The exception is
o (the population variance] for which the ML esti-
mator (which uses n in the denominater) is
slightly biased, although the bias is trivial if the
sample size is reasonably large (Neter et al. 1996).
In balanced linear models (linear regression and
ANOVA} for which the assumptions hold (see
Chapter 5 onwards), ML and OLS estimators of
regression slopes and/or factor effects are identi-
cal. However, OLS is inappropriate for some
common models where the response variable(s) or
the residuals are not distributed normally, e.g.
binary and more general categorical data.
Therefore, generalized linear meodeling (GLMs
such as logistic regression and loglinear models;
Chapter 13) and nonlinear modeling (Chapter 6}
are based around ML estimation.

2.5 | Resampling methods for
estimation

The methods described above for calculating stan-
dard errors for a statistic and confidence intervals

for a parameter rely on knowing two properties of
the statistic (Dixon 1993).

* The sampling distribution of the statistic,
usually assumed to be normal, i.e. the Central
Limit Theorem holds.

* The exact formula for the standard error (i.e.
the standard deviation of the statistic).

These conditions hold for a statistic like the
sample mean but do not obviously extend to other
statistics like the median (Efron & Gong 1983). In
biology, we would occasionally like to estimate
the population values of many measurements for
which the sampling distributions and variances
are unknown. These include ecological indices
such as the intrinsic rate of increase {r) and dissim-
ilarity coefficients (Dixon 1993) and statistics
from unusual types of analyses, such as the inter-
cept of a smoothing function (see Chapter 5; Efron
& Tibshirani 1991). To measure the precision (i.e.
standard errors and confidence intervals) of these
types of statistics we must rely on alternative,
computer-intensive resampling methods. The two
approaches described below are based on the
same principle: in the absence of other informa-
tion, the best guess for the distribution of the pop-
ulation is the observations we have in our sample.
The methods estimate the standard error of a stat-
istic and confidence intervals for a parameter by
resampling from the original sample.

Good introductions to these methods include
Crowley (1592), Dixon (1993), Manly (1997) and
Robertson (1991}, and Efron & Tibshirani {(1991)
suggest useful general applications. These resam-
pling methods can also be used for hypothesis
testing (Chapter 3).

2.5.1 Bootstrap

The bootstrap estimator was developed by Efron
(1982). The sampling distribution of the statistic is
determined empirically by randomly resampling
{using a random number generator to choose the
observations; see Robertson 1991), with replace-
ment, from the original sample, usually with the
same original sample size. Because sampling is
with replacement, the same observation can obvi-
ously be resampled so the bootstrap samples will
be different from each other. The desired statistic
can be determined from each bootstrapped
sample and the sampling distribution of each
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distributions of (a) bootstrap means
and (b) bootstrap medians, based on
1000 bootstrap samples (n=39) of
$O,7" for 39 sites from forested
watersheds in the Catskill
Mountains in New York State (data
from Lovett et al. 2000).
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statistic determined. The boot- 0
strap estimate of the parame-

ter is simply the mean of the

statistics from the bootstrapped samples. The
standard deviation of the bootstrap estimate (i.e.
the standard error of the statistic) is simply the
standard deviation of the statistics from the boot-
strapped samples (see Figure 2.4).

Technigues like the bootstrap can be used to
measure the bias in an estimator, the difference
between the actual population parameter and the
expected value (mean) of the estimator. The boot-
strap estimate of bias is simply the difference
between the mean of the bootstrap statistics and
the statistic calculated from the original sample
(which is an estimator of the expected value of the
statistic); see Robertson (1991).

Confidence intervals for the unknown popula-
tion parameter can also be calculated based on
the bootstrap samples. There are at least three
methods (Dixon 1993, Efron & Gong 1983,
Robertson 1991). First is the percentile method,
where confidence intervals are calculated directly
from the frequency distribution of bootstrap sta-
tistics. For example, we would arrange the 1000
bootstrap statistics in ascending order. Based on
1000 bootstrap samples, the lower limit of the 95%
confidence interval would be the 25th value and
the upper limit of the 95% confidence interval
would be the 975th value; 950 values (95% of the
bootstrap estimates) would fall between these
values. Adjustments can easily be made for other
confidence intervals, e.g. 5th and 995th value for
a 99% confidence interval.

Unfortunately, the distribution of bootstrap
statistics is often skewed, especially for statistics
other than the mean. The confidence intervals cal-
culated using the percentile method will not be
symmetrical around the bootstrap estimate of the
parameter, so the confidence intervals are biased.

80 62 64 66 58 60 62 64 66
Mean Median

The other two methods for calculating bootstrap
confidence intervals correct for this bias.

The bias-corrected method first works out the
percentage of bootstrap samples with statistics
lower than the bootstrap estimate. This is trans-
formed to its equivalent value from the inverse
cumulative normal distribution (z,) and this value
used to modify the percentiles used for the lower
and upper limits of the confidence interval:

95% percentiles = ¢(2z, % 1.96) (2.13)

where @ is the normal cumulative distribution
function. So we determine the percentiles for the
values (2, +1.96) and {2z, — 1.96) from the normal
cumulative distribution function and use these as
the percentiles for our confidence interval. A
worked example is provided in Box 2.2.

The third method, the accelerated bootstrap,
further corrects for bias based on a measure of the
influence each bootstrap statistic has on the final
estimate. Dixon (1993} provides a readable expla-
nation.

2.5.2 Jackknife

The jackknife is an historically earlier alternative
to the bootstrap for calculating standard errors
that is less computer intensive. The statistic is cal-
culated from the full sample of n observations
{call it #), then from the sample with first data
point removed (6 ), then from the sample with
second data point removed (67 ) etc. Pseudovalues
for each observation in the original sample are
calculated as:

§,=nf"—(n—1)6", (2.14)

where 67, is the statistic calculated from the
sample with observation i omitted. Each pseudo-
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value is simply a combination of two estimates of
the statistic, one based on the whole sample and
one based on the removal of a particular observa-
tion.

The jackknife estimate of the parameter is
simply the mean of the pseudovalues (). The stan-
dard deviation of the jackknife estimate {the stan-
dard error of the estimate) is:

\/"—?L e — oy (2.15)

Note that we have to assume that the pseudoval-
ues are independent of each other for these calcu-
lations (Crowley 1992, Roberston 1991), whereas
in reality they are not. The jaclkknife is not usually
used for confidence intervals because so few
samples are available if the original sample size
was small (Dixon 1993). However, Crowley (1992)
and Robertson (1991) suggested that if normality
of the pseudovalues could be assumed, then con-
fidence intervals could be calculated as usual
{using the t distribution because of the small
number of estimates).

2.6 | Bayesian inference — estimation

The classical approach to point and interval esti-
mation might be considered to have two limita-
tions. First, only the observed sample data
contribute to our estimate of the population
parameter. Aty previous information we have on
the likely value of the parameter cannot easily be
considered when determining our estimate,
although our knowledge of the population from
which we are sampling will influence the design
of our sampling program (Chapter 7). Second, the
interval estimate we have obtained has a frequen-
tist interpretation — a certain percentage of confi-
dence intervals from repeated sampling will
contain the fixed population parameter. The
Bayesian approach to estimating parameters
removes these limitations by formally incorporat-
ing our prior knowledge, as degrees-of-belief
{Chapter 1), about the value of the parameter and
by producing a probability statement about the
paramefer, e.g. there is a 95% probability that
lies within a certain interval.

2.6.1 Bayesian estimation
To estimate parameters in a Bayesian framework,
we need to make two major adjustments to the
way we think about parameters and probabilities.
First, we now consider the parameter to be a
random variable that can take a range of possible
values, each with different probabilities or
degrees-of-belief of being true (Barnett 1999), This
contrasts with the classical approach where the
parameter was considered a fixed, but unknown,
quantity. Dennis {1996), however, described the
parameter being sought as an unknown variable
rather than a random variable and the prior and
posterior distributions represent the probabilities
that this unknown parameter might take differ-
entvalues. Second, we must abandon our frequen-
tist view of probability. Qur interest is now only in
the sample data we have, not in some long run
hypothetical set of identical experiments (or
samples). In Bayesian methods, probabilities can
incorporate subjective degrees-of-belief (Chapter
1), although such opinions can still be guantified
using probability distributions.

The basic logic of Bayesian inference for esti-
mating a parameter is:

P{data| &)P(6)

P(#|data)= P(data)

(2.16)

where

f is the population parameter to be
estimated and is regarded as a random variable,

P(#) is the “unconditional” prior probability
of &, expressed as a probability distribution
summarizing our prior views about the
probability of # taking different values,

Pidata|8) is the likelihood of observing the
sample data for different values of #, expressed
as a likelihood function (Section 2.4.1),

P(data) is the expected value (mean) of the
likelihood function; this standardization means
that the area under the posterior probability
distribution equals one, and

P{f |data) is the posterior probability of 8
conditional on the data being observed,
expressed a probability distribution
summarizing the probability of & taking
different values by combining the prior
probability distribution and the likelihood
function.
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Equation 2.16 can be re-expressed more simply
as:

posterior probability xlikelihood X
prior probability (2.17)

because the denominator in Equation 2.15,
P{data), is a normalizing constant, the mean of the
likelihood function (Ellison 1956}.

2.6.2 Prior knowledge and probability
Prior probability distributions measure the rela-
tive “strength of belief” in possible values of the
parameter (Dennis 1996) and can be of two forms
{Barnett 1999}

1. Prior ignorance or only vague prior knowl-
edge, where we have little or no previous info-
mation to suggest what value the parameter
might take. While some Bayesians might argue
that scientists will always have some prior infor-
mation, and that we will never be in a position
of complete ignorance, prior ignorance is a
conservative approach and helps overcome the
criticism of Bayesian statistics that subjectively
determined prior opinion can have too much
influence on the inferential process. We can
represent prior ignorance with a non-informa-
tive prior distribution, sometimes called a
diffuse distribution because such a wide range of
values of @ is considered possible. The most
typical diffuse prior is a rectangular (uniform or
flat) probability distribution, which says that
each value of the parameter is equally likely.

One problem with uniform prior distribu-
tions is that they are improper, i.e. the probabil-
ity distribution does not integrate to one and
therefore the probability of any range of values
might not be less than one. In practice, this is
not a serious problem because improper priors
can be combined with likelihoods to produce
proper posterior distributions. When we use a
non-informative prior, the posterior distribution
of the parameter is directly proportional to the
likelihood function anyway. The uniform prior
distribution can be considered a reference
prior, a class of priors designed to represent
weak prior knowledge and let the data, and
therefore the likelihood, dominate the posterior
distribution.

2. Substantial prior knowledge or belief repre-
sented by an informative prior probability distri-
bution such as a normal or beta distribution.
The construction of these informative prior
distributions is one of the most controversial
aspects of Bayesian inference, especially if they
are constructed from subjective opinion. Crome
et al. (1996] illustrated one approach based on
surveying a small group of people for the
opinions about the effects of logging. Dennis
(1996) and Mayo (1996) have respectively high-
lighted potential practical and philosophical
issues associated with using subjective prior
information.

2.6.3 Likelihood function

The likelihood function P(data|#), standardized
by the expected value (mean) of likelihood func-
tion {P(data)], is how the sample data enter

Bayesian calculations. Note that the likelihood

function is not strictly a probability distribution
{Section 2.4.1), although we refer to it as the prob-
ability of observing the data for different values
of the parameter. If we assume that our variable
is normally distributed and the parameter of
interest is the mean, the standardized likelihood
function is a normal distribution with a mean
equal to the mean of the sample data and a vari-
ance equal to the squared standard error of the
mean of the sample data (Box & Tiao 1973, Ellison
1996).

2.6.4 Posterior probability
All conclusions from Bayesian inference are
based on the posterior probability distribution of
the parameter. This posterior distribution repre-
sents our prior probability distribution modified
by the likelihood function. The sample data only
enter Bayesian inference through the likelihood
function. Bayesian inference is usually based on
the shape of the posterior distribution, particu-
larly the range of values over which most of the
probability mass occurs. The best estimate of
the parameter is determined from the mean of
the posterior distribution, or sometimes the
median or mode if we have a non-symmetrical
posterior.

If we consider estimating a parameter (#) with
a normal prior distribution, then the mean of the
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normal posterior distribution of § is (Box & Tiao
1973, Ellison 1996):
1

= & +wy 2.18
_— Wl{wﬂ o TWY) {218}

where 8, is the mean of the prior distribution, y is
the mean of the likelihood function (i.e. sample
mean from data), w, is the reciprocal of the esti-
mate of the prior variance o (1fs,%), w, is the
reciprocal of the sample variance times the
sample size {nfs?) and n is the sample size. In other
words, the posterior mean is a weighted average of
the prior mean and the sample mean (Berry 1996).
This posterior mean # is our estimate of 6, the
parameter of interest.

The variance of the posterior distribution
equals:

(2.19)

Note that with a non-informative, flat, prior the
posterior distribution is determined entirely by
the sample data and the likelihood function. The
mean of the posterior then is ¥ (the mean of the
sample data) and the variance is s%/n {the variance
of the sample data divided by the sample size).
The Bayesian analogues of frequentist confi-
dence intervals are termed Bayesian credible or
probability intervals. They are also called highest
density or probability regions because any value
in the region or interval has a higher probability
of occurring than any value outside. If we have a
normal posterior distribution for a parameter,
Bayesian credible intervals for this parameter are:

P{i-2VD=6=§+2VD} =095 {2.20)

where D=2, the variance of the posterior distri-
bution {Ellison 1996}. Alternatively, the usual
methods based on the t distribution can be used
(Winkler 1993). Note that because the parameter
is considered a random variable in Bayesian infer-
ence, the interval in Equation 2.20 is telling us
directly that there is a 95% probability that the
value of the parameter falls within this range,
based on the sample data. With a non-informative
(flat) prior distribution, the Bayesian confidence
interval will be the same as the classical, frequen-
tist, confidence interval and Edwards {1996)
argued that the difference in interpretation is
somewhat semantic. He recommended simply

reporting the interval and letting the reader inter-
pret it as required. If we have a more informative
prior distribution (i.e. we knew that some values
of ¢ were more likely than others), then the
Bayesian credible interval would be shorter than
the classical confidence interval.

2.6.5 Examples

We provide a very simple example of Bayesian esti-
mation in Box 2.4, based on the data from Lovett
et al. (2000) on the chemistry of forested water-
sheds. Another biological example of Bayesian
estimation is the work of Carpenter (1990). He
compared eight different models for flux of pesti-
cides through a pond ecosystem. Each model was
given an equal prior probability (0.125), data were
collected from an experiment using radicactively
labeled pesticide and likelihoods were deter-
mined for each model from the residuals after
each model was fitted using OLS (see Chapter 2).
He found that only one of the models had a poste-
rior probability greater than 0.1 {actually it was
0.97, suggesting it was a very likely outcome).

2.6.6 Other comments

We would like to finish with some comments.
First, normal distributions are commonly used for
both prior and posterior distributions and likeli-
hood functions for the same reasons as for classi-
cal estimation, especially when dealing with
means. Other distributions can be used. For
example, Crome et al. {1996} used a mixture of log-
normal distributions for an informative prior (see
also Winkler 1993) and the beta distribution is
commonly used as a prior for binomially distrib-
uted parameters.

Second, the data generally are much more
influential over the posterior distribution than
the prior, except when sample sizes, andfor the
variance of the prior, are very small. Carpenter
{1990) discussed Bayesian analysis in the context
of largescale perturbation experiments in
ecology and he also argued that prior probabil-
ities had far less impact than the observed data on
the outcome of the analysis and implied that the
choice of prior probabilities was not crucial.
However, Edwards (1996) noted that if the prior
standard deviation is very small, then differences
in the prior mean could have marked effects on
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Box 2.4 | Worked example of Bayesian estimation:
chemistry of forested watersheds

To illustrate the Bayesian approach to estimation, we will revisit the earlier example
of estimating the mean concentration of $O,7~ in first and second order stream
sites in the Catskill Mountains in New York State based on a sample of 39 sites
(Lavett et al. 2000). Now we will consider the mean concentration of 5O,’ a
random variable, or at least an unknown variable {Dennis |996), and also make use
of prior information about this mean, .2 we will estimate cur mean from a Bayesian
perspective. For comparison, we will also investigate the effect of more substantial
prior knowledge, in the form of a less variable prior prebability distribution. We will
follow the procedure for Bayesian estimation from Bosx & Tiao {1973; see also Berry
1996 and Ellison 1996).

I Using whatever information is available (including subjective assessment;
see Crome et al. 1996), specify a prior probability distribution for Y, Note that
initial estimates of the parameters of this distribution will need to be specified; a
normal prior requires an initial estimate of the mean and variance. Imagine we
had sampled the central Catskill Mountains at a previous time so we had some
previous data that we could use to set up a prior distribution. Ve assurmed the
prior distribution of the concentration of $O,*~ was normal and we used the
mean and the variance of the previous sample as the parameters of the prior
distribution. The prior distribution could also be a non-informative (flat) one if no
such pravious information was available.

2. Collect a sample to provide an estimate of the parameter and its variance.
In our example, we had a sample of concentration of 50,>~ from 39 streams and
determired the sample mean and variance.

3. Determine the standardized likefihood function, which in this example is
a normal distribution with a mean equal 1o the mean of the sample data
and a variance equal to the sguared standard error of the mean of the sample
data.

4, Determine the posterior probability distribution for the mean
conceniration of $C0,2, which will be a narmal distribution because we used a
normal prior and likelihood function. The mean of this posterior distribution
(Equation 2.18) is our estimate of population mean concentration of SO,*~ and
we can determine credible intervals for this mean (Equation 2.20).

High variance prior distribution

Prior mean = 50.00, prior variance = 44.00.

Sample mean= 4192 sample variance =27.47,n=39.

Using Equations 2.18, 2.19 and 2.20, substituting sample estimates whera
appropriate:

w,=0.023

w = 1419

Posterior mean = 61.73, postericr variance = (.69, 95% Bayesian probability
interval = 60.06 to 62.57.

Note that the posterior distribution has almost the same estimated mean as
the sample, so the posterior is determined almost enttirely by the sample data.
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{ ow variance prior distribution

If we make cur prior estimate of the mean much more precise;

Prior mean = 50.00, prior variance = [ 0:00.

Sample mean = 61.97, sample variance = 27.47,n=39.

w,=0.100

w,= 1419

Postericr mean = 61.14, posterior variance = 0.66, 5% Bayesian probability
interval =59.51 to 62.76.

MNow the prior distribution has a greater influence on the posterior than previ-
ously, with the posterior mean more than half one unit lower: In fact, the more dif-
ferent the prior mean is from the sample mean, and the more precise our estimate
of the prior mean is, i.e. the lower the prior variance, the more the prior will influ-

ence the posterior relative to the data.

Note that if we assume a fiat prion the posterior mean is just the mean of the

data (61.92).

the posterior mean, irrespective of the data. He
described this as “editorial”, where the results of
the analysis are mainly opinion.

Third, if a non-informative prior (like a rectan-
gular distribution) is used, and we assume the
data are from a normally distributed population,
then the posterior distribution will be a normal
(or t) distribution just like in classical estimation,
i.e. using a flat prior will result in the same esti-
mates as classical statistics. For example, if we
wish to use Bayesian methods to estimate u, and
we use a rectangular prior distribution, then the
posterior distribution will turn out to be a normal
distribution (if ¢ris known) or a t distribution (if &
is unknown and estimated from s, which means
we need a prior distribution for s as well).

Finally, we have provided only a very brief
introduction to Bayesian methods for estimation

and illustrated the principle with a simple
example. For more complex models with two or
more parameters, calculating the posterior distri-
bution is difficult. Recent advances in this area
use various sampling algorithms (e.g. Hastings-
Metropolis Gibbs sampler) as part of Markov chain
Monte Carlo methods. These techniques are
beyond the scope of this book — Barnett (1999) and
Gelman et al. (1995) provide an introduction
although the details are not for the mathemati-
cally challenged. The important point is that once
we get beyond simple estimation problems,
Bayesian methods can involve considerable statis-
tical complexity.

Other pros and cons related to Bayesian infer-
ence, particularly in comparison with classical
frequentist inference, will be considered in
Chapter 3 in the context of testing hypotheses.




