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! " ~ I Chapter I 

Introduction 

Biologists and environmental scientists today 
must contend with the demands of keeping up 
with their primary field of specialization, and at 
the same time ensuring that their set of profes­
sional too15 is current. Those too15 may include 
topics as diverse as molecular genetics , sediment 
chemistry, and small-scale hydrodynamics, but 
one tool that is common and central to most of 
us is an understanding of experimental design 
and data analysis , and the decisions that we 
make as a result of our data analysis determine 
our 旬ture research directions or environmental 
management. With the advent of powerful 
desktop computers , we can now do complex anaM 

lyses that in previous years were available only to 
those with an initiation into the wonders of early 
maln仕'ame statistical programs. or computer pro-­
gramming languages , or those with the time for 

acquaintance were not covered by any one partic 
ular text 

A fundamental step in becoming familiar with 
data collection and analysis is to understand the 
philosophical viewpoint and basic tools that 
underlie what we do. We begin by describing our 
approach to scientific method. Because our aim is 
to cover some complex techniques, we do not 
describe introductory statistical methods in 
much detail. That task is a separate one , and has 
been done verywell by a wide range of authors. We 
therefore provide only an overview or refresher of 
some basic philosophical and statistical concepts 
We strongly urge you to read the first few cha pters 
of a good introductory statistics or biostatistics 
book (you can't do much better than Sokal & Rohlf 
1995) before working through this chapter 

Scientifìc method 
laborious hand ca1culations. In past years , those I I 

statistical tools determined the range of sam. … 
pling programs and analys自由at we were 
willing to attempt. Now that we can do much An appreciation ofthe philosophical bases 面。rthe

way we do our scientific research is an important 
prelude to the rest of this book (see Chalmers 
1999, Gower 1997, O'Hear 1989). There are many 
valuable discussions of scientific philosophy from 
a biological context and we particularly recom 
mend Ford (2000), ]ames & McCulloch (1985). 
Loehle (1987) and Underwood (1990 , 1991) 
Maxwell & Delaney (1990) provide an overview 
仕om a behavioral sciences viewpoint and the 且rst

two chapters of Hilborn & Mangel (1997) empha 
size alternatives to the Popperian approach in sit 
uations where expe口mental tests of hypotheses 
are simply not possible 

more complex analyses , we can examine data in 
more sophisticated ways τ'his power comes at a 
cost because we now collect data with complex 
underlying statistical models, and , therefore, we 
need to be familiar with 出e potential and limita 
tions of a much greater range of statistical 
approaches 

With any 且eld of science, there are particular 
approaches that are more common than others 
Texts written 岛r one field will not necessarily 
cover the most common needs of another field , 

and we felt that the needs of most common biol 
ogists and environmental scientists of our 



2 INTRODUCTION 

Early attempts to develop a philosophy of sci­
entific logic, mainly due to Francis Bacon and 
John Stuart Mill, were based around the principle 
ofinduction, whereby sufficient numbers of con­
firmatory observations and no contradictory 
observations allow us to conclude that a theory or 
law is true (Gower 1997). The logical problems 
with inductive reasoning afe discussed in every 
text on the philosophy of science , in pa吐icular

that no amount of confirmatory observations can 
ever prove a theory. An a1ternative approach , and 
a150 the most commonly used scientific method 
in modern biological sciences literature, employs 
deductive 四asoning， the process of deriving 
explanations or predictions 仕om laws or theories. 
Karl Popper (1968 , 1969) formalized this as the 
hypothetic<HIeductive approach , based around 
the principle of falsifìcationism , the doctrine 
whereby theories (or hypotheses derived 仕om

them) are disproved because proof is logically 
impossible. An hypothesis is falsifiable if there 
exists a logically possible observation that is 
inconsistent with it. Note that in many scientifìc 
investigations, a description ofpattern and induc­
tive reasoning, to develop models and hypotheses 
(Mentis 1988), is followed by a deductive process in 
which we critica11y test our hypotheses 

Underwood (1990, 1991) outlined the steps 
involved in a falsifìcationist test. We wi11 i11ustrate 
these steps with an example 仕om the ecological 
literature, a study ofbioluminescence in dinoflag­
ellates by Abrahams & Townsend (1993)。

1.1.1 Pattern description 
The process starts with observation(s) of a pattern 
or departure 仕om a pattern m nature 
Underwood (1990) also called these puzzles or 
problemsτhe quantitative and robust descrip­
tion ofpatterns is , therefore, a crucial part ofthe 
scientifìc process and is sometimes termed an 
observational study (Manly 1992). While we 
strongly advocate experimental methods in 
biology, experimental tests of hypotheses derived 
仕om poorly co11ected and interpreted observa­
tional data will be oflittle use 

In our example. Abrahams & Townse口d (1993) 
observed that dinoflage11ates bioluminesce when 
the water they are in is disturbedτhe next step is 
to explain these obse凹atIOns.

1.1.2 Models 
ηle explanation of an observed pattern is referred 
to as a model or theory (Ford 2000), which is a 
series of statements (or 岛rmulae) that explains 
why the observations have occurred. Model devel­
opment is also what Peters (1991) referred to as the 
synthetic or private phase of the scienti直C

皿ethod ， where the perceived problem interacts 
with insight, existing theory, belief and previous 
observations to produce a set of competing 
models. Th is phase is clearly inductive and 
involves developing theories 仕om observations 
(Chalmers 1999). the exploratory process of 
hypothesis formulation 

James & McCulloch (1985) , while emphasizing 
the importance offormulating models in science, 

distinguished different types of models. Verbal 
models are non-mathematical explanations of 
how nature works. Most biologists have some idea 
of how a process or system under investigation 
operates and this idea drives the investigation. It 
is often useful to formalize that idea as a concep­
tual verbal model, as this might identi市 lmpor­

tant components of a system that need to be 
included in the model. Verbal models can be 
quantifìed in mathematical terms as either 
empiric models or theoretic models τhesemodels 
usua11y relate a response or dependent variable to 
one or more predictor or independent va口ables
We can envisage 仕'Om our biological understand 
ing of a process that the response variable might 
depend on, or be affected by, the predictor vari 
ables. 

Empiric models are mathematical descrip­
tions of relationships resulting from processes 
四ther than the processes themselves, e.g. equa 
tions describing the relationship between metab­
olism (response) and body mass (predictor) or 
species number (response) and island area (first 
predictor) and island age (second predictor) 
Empiric models are usua11y statistical models 
(Hilborn & Mangel 1997) and are used to describe 
a relationship between response and predictor 
variables. Much of this book is based on fitting 
statistical models to observed data 

τheoretic models , in contrast, are used to 
study processes, e.g. spatial variation in abun­
dance of intertidal snails is caused by variations 
in settlement of larvae, or each outbreak of 

r 

Mediterranean fruit t1y in Cali岛mia is caused by 
a neW colonization event (Hilborn & Mangel1997) 
In many cases , we wi11 have a theoretic, or scien­
tifìc, model that we can re-express as a statistical 
model. For example , island biogeography theory 
suggests that the number of species on an island 
is related to its area. We might express this scien­
tifìc model as a linear statistical relationship 
between species number and island area and eval­
uate it based on data 仕'Om a range ofislands of dif­
ferent sizes. Bo由 empirical and theoretic models 
can be used 且or prediction, although the general 
ity ofpredictions will usually be greater岛r theor 
etic models 

The scientific model proposed to explain biolu 
minescence in dinot1agellates was the "burglar 
alarm model" , whereby dinofiagellates biolu­
minesce to attract predators of copepods , which 
eat the dinoflagellates. The remaining steps in the 
process are designed to test or evaluate a particu­
lar model 

1.1.3 Hypotheses and tests 
We can make a prediction or predictions deduced 
仕om our model or theory; these predictions are 
ca1led research (or logica1) hypotheses. If a partic­
ular model is correct, we would predict spec而c

observations under a new set of circumstances 
币lis is what Peters (1991) termed the analytic, 

public or Popperian phase of the scienti且c

method, where we use critical or formal tests to 
εvaluate models by falsi趴ng hypotheses. Ford 
(2000) distinguished three meanings of the term 
"hypothe四". We will use it in Ford's (2000) sense 
of a statement that is tested by investigation, 

experimenta11y if possible. in contrast to a model 
or theory and also in contrast to a postulate. a new 
or unexplored idea 

One of the dif:且culties with this stage in the 
process is decidingwhich models (and subsequent 
hypotheses) should be given research priority 
There will often be many competing models and, 

with limited budgets and time , the choice of 
which models to evaluate is an important one 
Popper originally suggested that scientists should 
test those hypotheses that are most easily fals温ed

by appropriate tests. Tests of theories or models 
using hypotheses with high empirical content 
and which make improbable predictions are what 

SClENTIFIC METHOD 

Popper called severe tests , although that term has 
been redefined by Mayo (1996) as a test that is 
likely to reveal a specifìc error ifit exists (e.g. deci­
sion errors in statistical hypothesis testing - see 
αlapter 3). Underwood (1990 , 1991) argued that it 
is usually difficult to de口de which hypotheses are 
most easily refuted and proposed that competing 
models are best separated when their hypotheses 
are the most distinctive. i.e. they predict very dif­
ferent results under similar conditions. There are 
other ways of deciding which hypothesis to test , 

more related to the sociology of science. Some 
hypotheses may be relatively trivial , or you may 
have a good idea what the results can be. Testing 
that hypothesis may be most likely to produce 
a statistically signi自cant (see Chapter 码. and, 

unfortunately therefore , a publishable result 
Alternatively. a hypothesis may be novel or 
require a complex mechanisrn that you think 
unlikely. That result might be moreεxcitingto the 
general scientifìc community, and you might 
decide that, although the hypothesis is harder to 
test, you're wi11ing to gamble on the fame , money. 
or personal satisfaction that would result from 
such a resul t 

Philosophers have long recognized that proof 
of a theory or its derived bypothesis is logically 
impossible, because a11 observations related to the 
hypothesis must be made. Chalmers (1999; see 
also Underwood 1991) provided the clever 
example of the long history of observations in 
Europe that swans were white. Only by observing 
a11 swans everywhere could we "prove" that a11 
swans are white. The fact that a single observation 
contrary to the hypothesis could disprove it was 
clearly illustrated by the discovery ofblack swans 
in Australia. 

The need for disproof dictates the next step in 
the process of a falsifìcationist test. We speci与 a

null hypothesis that includes all possibilities 
except the prediction in the hypothesis. It is 
much simpler logically to disprove a null hypoth­
eSlsτhe null hypothesis in the dinoflagellate 
example was that bioluminesence by dinoflagel­
lates would have no effect on , or would decrease. 
the mortality rate of copepods grazing on dino­
fiagellates. Note that this null hypothesis 
incIudes a11 possibilities except the one speci且ed
in the hypothesis 
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4 INTRODUCTION 

So , the final phase in the process is the experi 
mental test ofthe hypothesis. Ifthe null hypothe 
SlS IS 问ec时， the logical (or research) hypothes凹，
and therefore the model, is supported. The model 
should then be re且ned and improved , perhaps 
making it predict outcomes for di旺坦rent spatial 
or temporal scales , other species or other new sit­
uations. Ifthe null hypothesis is not rejected , then 
it should be retained and the hypothesis, and the 
model from which it is derived , are incorrect. We 
then 5taft the process again, although the statisti­
cal decision not to reject a null hypothesis is more 
problematic (Chapter 3) 

The hypothesis in the study by Abrahams & 

Townsend (1993) was that bioluminesence would 
increase the mortality rate of copepods grazing on 
dinoflagellates. Abrahams & Townsend (1993) 
tested their hypothesis by comparing the mortal 
ity rate of copepods in jars containing biolumi 
nescing dinoflagellates , copepods and one fish 
(copepod predator) with control jars containing 
non-bioluminescing dinotlagellates , copepods 
and one fish. The result was that the mortaIity 
rate of copepods was greater when feeding on bio­
luminescing dinoflagellates than when f出ding

on non-bioluminescing dinoflagellatesτherefore 
the null hypothesis was rejected and the logical 
hypothesis and burgIar aIarm modeI was sup­
ported 

1.1 .4 Alternatives to falsifìcation 
While the Popperian phiIosophy offalsificationist 
tests has been very influential on the scientific 
method , especially in biology, at least two other 
Vlewp01nts n巳ed to be considered. First， τbomas 

Kuhn (1970) argued that much of science is 
carried out within an accepted paradigm or 
framework in whi<力 scientists refine the theories 
but do not really challenge the paradigm. FaIsified 
hypotheses do not usually result in rejection of 
the over-archingparadigm but simply its enhance­
mentτbis "normal science" is punctuated by 
occasional scientific revolutions that have as 
much to do with psychoIogy and sociology as 
empirical information that is counter to the pre­
vaiIing paradigm (O'Hear 1989). These scientific 
revolutions result in (and from) changes in 
methods , objectives and personnel (Ford 2000) 
Kuhn's arguments have been described as relativ-

istic because there are often no objective criteria 
by which existing paradigms and theories are 
toppled and replaced byaIternatives 

Second , Imre Lakatos (1978) was not con­
vinced that Popper's ideas of fals出cation and 
severe tests really re t1ected the practical applica­
tion of science and that individual decisions 
about faIsi制ng hypotheses were risky and arbi­
trary (Mayo 1996). Lakatos suggested we should 
develop scientific research programs that consist 
of two components: a "hard core" of theories 
that are rareIy challenged and a protective belt of 
auxiliary theories that are often tested and 
replaced if a1ternatives are better at predicting 
outcomes (Mayo 1996). One of the contrasts 
between the ideas of Popper and Lakatos that is 
important 仕om the statistical perspective is the 
Iatter's ability to deal with multiple competing 
hypotheses more elegantIy than Popper's severe 
tests of individual hypotheses (HiIborn & Mangel 
1997) 

An important issue for 吐le Popperian philoSD­

phy is corroboration. The falsificationist test 
makes it clear what to do when an hypothesis is 
rejected after a severe test but it is less clear what 
the next step should be when an hypothesis passes 
a severe test. Popper argued that a theory, and its 
derived hypothes阻， that has passed repeated 
severe testing has been corroborated. However, 
because of his difficulties with inductive think­
ing. he viewed corroboration 刮目皿ply a measure 
of the past performance of a model, rather an 
indication of how well it might predict in other 
circumstances (Mayo 1996, O'Hear 1989). This is 
frustrating because we clearly want to be able to 
use models that have passed testing to make pre­
dictions under new circumstances (Peters 1991) 
While detailed discussion of the problem of cor. 
roboration is beyond the scope of this book (see 
Mayo 1996), the issue suggests two further areas of 
debate. First, there appears to be a role 亚or both 
induction and deduction in the scientific method, 

as both have obvious strengths and weaknesses 
and most biological research cannot heIp but use 
both in practice. Second，自onnal corroboration of 
hypotheses may require each to be allocated some 
measure of 吐1e probability that each is true or 
false. i.e. some measure of 凹idence in favor or 
against each hypothesis. This goes to the heart of 

FF 

one of the most long-standing and vigorous 
debates in statistics. that between 仕equent1sts
and Bayesians (Section 1.4 and Chapter 3). 

Ford (2000) provides a provocative and thor­
ough evaluation of the Kuhnian. Lakatosian and 
popperian approaches to the scientific method, 

with examples 仕om the ecological sciences 

1.1.5 Role of statistical analysis 
币le application ofstatistics is important through­
out the process just described. First, the descrip­
tion and detection of patterns must be done in a 
rigorous manner. We want to be able to detect gra­
dients in space and time and develop models that 
explain these patterns. We also want to be confi­
dent in our estimates of the parameters in these 
statistical models. Second, the design and analysis 
ofexperimental tests ofhypotheses are crucial. lt 
is important to remember at this stage that the 
research hypothesis (and its complement, the nulI 
hypothesis) derived from a model is not the same 
as the statistical hypothesis (James & McCulIoch 
1985); indeed, Underwood (1990) has pointed out 
the logical problems that arise when the research 
hypothesis is identical to the statistical hypothe­
sis. Statistical hypotheses are framed in terms of 
population parameters and represent tests of the 
predictions of the research hypotheses ijames & 

McCulIoch 1985). We will discuss the process of 
testing statistical hypotheses in Chapter 3. FinalIy, 

we need to present our results，世om both the 
descriptive sampling and from tests of hypothe­
S凹， manm岛rmative and concise manner， τhis 

will include graphical methods , which can aIso be 
important for exploring data and checking 
assumptions of statistical procedures 

Because science is done by real people. there 
are aspec臼 of human psychoIogy that can influ 
ence the way science proceeds. Ford (2000) and 
Loehle (1987) have summarized many of these in 
an ecological context, including confirmation 
bias (the tendency for scientists to confirm their 
own theories or ignore contradictory evidence) 
and the。可 tenacity (a strong commitment to 
basic assumptions because of some emotional or 
personal investment in the underlying ideas) 
白lese psychological aspects can produce biases in 
a given discipline that have important implica 
tions for our subsequent discussions on research 

EXPERIMENTSAND OTHER TESTS 

design and data analysis. For example, there is a 
tendency in biology (and most sciences) to onIy 
publish positive (or statistically signi直cant)

results , rai日ng issues about statistical hypothesis 
testing and meta-analysis (Chapter 3) and power of 
tests (Chapter 7). In addition, successfuI tests of 
hypotheses rely on welI-designed 四penments

and we will consider issues such as confounding 
and replication in Chapter 7. 

12TExperlments and other tests 

Platt (1964) emphasized the importance of experi­
ments that 口'itically distinguish between alterna­
tive models and their derived hypotheses when he 
described the process of strong inference 

• devise alternative hypotheses , 

• devise a crucial experiment (or several experi 
ments) each ofwhich willεxclude one or more 
ofthe hypotheses , 

• carry out the experiment(s) carefully to obtain 
a "'clean" result, and 

• recycle the procedure with new hypotheses to 
refine the possibilities (i.e. hypotheses) that 
r喧maln

Crucial to PIatt's (1964) approach was the idea of 
multiple competing hypotheses and tests to dis­
tinguish between these. What nature should 
these tests take? 

In the dinoflagellate example above , the 
crucial test of the hypothesis involved a manipu­
lative experiment based on sound principles of 
experimental design (Chapter 7). Such manipula. 
tions provide the strongest inference about our 
hypotheses and models because we can assess the 
effects of causal factors on Qur response variable 
separateIy 仕'om other factors. James & McCulIoch 
(1985) emphasized that testing biological models , 

and their subsequent hypotheses. does not occur 
by simply seeing if their predictiolls are met in an 
observational context, although such results offer 
support for an hypothesis. Along with James & 

McCuIIoch (1985) , Scheiner (1993), Underwood 
(1990), Werner (1998), and many others, we argue 
strongly that manipulative experiments are the 
best way to properIy distinguish between biologi. 
cal modeIs. 
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6 INTRODUCTION 

There are at least two costs to this strong infer­
ence from manipulative experiments. First, 
experiments nearly always involve some art植cial

manipulation of nature. The most extreme form 
of this is when experiments testing some natural 
process are conducted in the laboratory. Even field 
experiments will often use artificial structures or 
mechanisms to implement the manipulation. For 
example , meSOCQsms (moderate sized enclosures) 
are often used to investigate processes happening 
in large water bodies , although there is evidence 
仕om work on lakes that issues related to the 
small-scale of meSQcosms may rest口ct generaliza­
tion to whole lakes (Carpenter 1996: see also 
Resetarits & Fauth 1998). Second , the larger the 
spatial and temporal scales of the process being 
investigated , the more difficult it is to meet the 
guidelines for good experimental design. For 
example , manipulations of entire ecosystems are 
cruc旧I 岛r our understanding of the role of 
natural and anthropogenic disturbances to these 
systems , espe口ally since natural resource agen­
口es have to manage such systems at this large 
spatial scale (Carpenter et al. 1995). Replication 
and randomization (two characteristics regarded 
as important for sensible interpretation of experi­
ments - see Chapter 7) are usua11y not possible at 
large scales and novel approaches have been devel­
oped to interpret such experiments (Carpenter 
1990). The problems of scale and the generality of 
conclusions 仕om smaller-scale manipulative 
experiments are challenging issues for experi­
mental biologists (Dunham & Beaupre 1998) 

τhe testing approach on which the methods in 
this book are based relies on making predictions 
仕om our hypothesis and seeing if those predic­
tions apply when observed in a new setting, i.e 
with data that were not used to derive the model 
originally. Ideally, this new setting is experimen­
tal at scales relevant for the hypothesis , but this is 
not always possible. Clearly, there must be addi­
tional ways of testing betvveen competing models 
and their derived hypotheses. Otherwise , disci­
plines in which experimental manipulation is dif­
ficult for practical or ethical reasons , such as 
meteorology, evolutionary biology，直sheries

ecology, etc. , could make no scienti直c progress 
The alternative is to predict from our 
models/hypotheses in new settings that are not 

experimenta11y derived. Hilborn & Mangel (1997) , 

while arguing for experimental studies in ecology 
where possible , emphasize the approach of "con­
仕onting" competing models (or hypotheses) with 
observational data by assessing howwell the data 
meet the predictions of the model 

Often , the new setting in which we test the 
predictions of our model may provide us with a 
contrast of some factor, similar to what we may 
have set up had we been able to do a manipula­
tive experiment. For εxample， we may never be 
able to (nor want to!) test the hypothesis that 
wild自re in old-growth 且orests affects populations 
offorest birds with a manipulative experiment at 
a realistic spatial scale. However, comparisons of 
bird populations in forests that have burnt natu­
ra11y with those that haven't provide a test of the 
hypothesis. Unfortunately, a test based on such a 
natural "experiment" (sensu Underwood 1990) is 
weaker inference than a real manipulative 
experiment because we can never separate the 
e俭cts of fire 仕om other pre-existing differences 
between the forests that might also affect bird 
populations. Assessments of effects of human 
activities ("environmental impact assessment") 
are often comparisons of this kind because we 
can rarely set up a human impact in a truly 
四perimental manner (Downes et a1. 2001). We11-
designed observational (sampling) programs can 
provide a refutationist test of a null hypothesis 
(Underwood 1991) by evaluating whether predic­
tions hold, although they cannot demonstrate 
causali可

While our bias in favor ofmanipulative experi­
ments is obvious , we hope that we do not appear 
too dogmatic. Experiments potentially provide 
the strongest inference about competing hypoth­
es凹， but their generality may also be constrained 
by their artifìcial na ture and limita tions of spa tial 
and temporal scale. Testing hypotheses against 
new observational data provides weaker distinc­
tions betvveen competing hypotheses and the in岳
rential strength of such methods can be improved 
by combining thenl with other forms of evidence 
(anecdotal , mathematical modeling, correlations 
etc. - see Downes et a1. 2001 , Hilborn & Mangel 
1997, McArdle 1996). In practi凹， most biological 
investigations will include both observational 
and experimental approaches. Rigorous and sen 

r-
sible statistical analyses will be relevant at a11 
stages of the investigation 

1.3 I Data, observations and 
variables 

In biology, data usua11y consist of a co11ection of 
observatlOns or 0时ects. These observations are 
usua11y sampling units (e.g. quadrats) or experi­
mental units (e.g. individual organisms, aquaria , 

etc.) and a set of these observations should repre­
sent a sample from a c1early defined population 
(all possible observations in which we are inter­
ested)τ1te "actual property measured by the indi 
vidualobse凹ations" (Sokal & Rohlf1995 , p 剑， e.g 
length , number ofindividuals , pH, etc ., is ca11ed a 
variable. A random variable (which we wi11 denote 
as y , with y being any value of Y) is simply a vari­
able whose values are not known for certain 
before a sample is taken, i.e. the observed values 
of a random variable are the results of a random 
experiment (the sampling process). The set of a11 
possible outcomes of the 凹甲enme时， e.g. a11 the 
possible values of a random variable, is called the 
sample space. Most variables we deal with in 
biology are random variables , although predictor 
variables in models might be :fixed in advance and 
therefore not random ηlere are two broad categ仕
ries of random variables 刷出screte random vari­
ables can only take certain, usually integer. 
values , e.g. the number of cells in a tissue section 
or number of plants in a 岛rest plot, and (ii) con­
tinuous random variables, which take any value , 

e.g. measurements like length. weight, salini吵，
blood pressure etc. Kleinbaum et al. (1997) distin­
guish these in terms of "gappiness" - discrete var­
iables have gaps between observations and 
continuous variables have no gaps between obser­
vations 

The distinction between discrete and continu­
ous variables is not always a c1ear dichotomy: the 
number of organisms in a sample of mud 仕oma
local estua巧'can take a very large range ofvalues 
but, of course , must be an integer so is actually a 
discrete variable. Nonetheless , the distinction 
betvveen discrete and continuous variables is 
important. especially when trying to measure 
uncertainty and probability. 

PROBABILlTY 

1.4 I Pr~bability 

τhe single most important characteristic of bio­
logical data is their uncertainty. For example. if 
we take two samples , each consisting of the same 
number of observations，仕om a population and 
estimate the mean for some variable, the two 
means will almost certainly be different, despite 
the samples coming 仕om the same population 
Hilborn & Mangel (1997) proposed two general 
causes why the two means might be dif坠rent， i.e 
two causes ofuncertainty in the expected vall1e of 
the population. Process uncertainty results 仕om
the true population mean being different when 
the second sample was taken compared with the 
first. Such temporal changes in biotic variables , 

even over very short time scales. are common in 
ecological systems. Observation uncertainty 
results fro皿 sampling error; the mean value in a 
sample 四日mply an imperfect estimate of the 
mean value in the population (a11 the possible 
obse凹ations) and. because of natural variability 
between observa t旧时， di旺èrent samples will 
nearly always produce different means 
Observation uncertainty can also result from 
measurement error, where the measuring device 
we are using is imperfect. For many biological var­
iables , natural variability is so great thatwe rarely 
worry about measurement error, although this 
might not be the case when the variable is meas 
ured using some complex piece of equipment 
prone to large malfunctions 

In most statistical analyses , we view uncer 
tainty in terms of probabilities and understand 
ing probability is crucial to understanding 
modern applied statistics. We wi11 only briefly 
introduce probability here. particularly as it is 
very important for how we interpret statistical 
tests of hypotheses. Very readable introductions 
can be found in Antelman (1997) , Barnett (1999) , 

Harrison & Tamaschke (1984) and Hays (1994): 
from a biological viewpoint in Sokal & Rohlf 
(1995) and Hilborn & Mangel (1997): and 仕om a 
philosophical perspective in Mayo (1996) 

We usually talk about probabilities in terms of 
events; the probability of event A occurring is 
written P(A). Probabilities can be betw四n zero 
and one: if P(A) equals zero, then the event is 

7 



impossible; if P(A) equals one , then the event is 
certain. As a simple example, and one that is used 
in nearly every introductory statìstics book, 
imagine the t055 of a coin. Most of U5 would state 
thatthe probability ofheads is 0.5, but what do we 
really mean by that statement? The c1assical inter­
pretation ofprobability is that it is the relative fre­
quency of an event that we would expect in the 
long run , or in a long sequence of identical trials 
In the coin tossing example, the probability of 
heads being 0.5 is interpreted as the expected pro­
portion of heads in a long sequence of tosses 
Problems with this long-run 仕equency lnterpreta­
tion of probability include defining what is meant 
by identical trials and the many situations in 
which uncertainty has nO sensible long-run 仕e
quency interpretation, e.g. probability of a horse 
winning a particular race, probabili可 ofit阻lmng

tomorrow (Antelman 1997). The long-run fre­
quency interpretation is actually the c1assical 5ta­
tistical interpretation ofprobabilities (termed the 
仕equentist approach) and is the interpretation we 
must place on confidence intervals (Chapter 2) 
and Pvalues 仕'Om statistical tests (Chapter 3). 

ηle alternative way of interpreting probabil­
ities is much more subjective and is based on a 
"degree of belief' about whether an event will 
occur. It is basically an attempt at quantification 
of an opinion and includes two slightly different 
approaches - logical probabili戈y developed by 
Carnap and 1eft恒ys and subjective probability 
pioneered by Savage , the latter being a measure of 
probabili可 spec植c to the person deriving it. The 
opinion on which the measure of probability is 
based may be derived 仕om previous observat旧时，
theoretical considerations , knowledge ofthe par­
ticular event under consideration, etc. This 
approach to probability has been criticized 
because of its subjective nature but it has been 
widely applied in the development of p 口or prob­
abilities in the Bayseian approach to statistical 
analysis (see below and Chapters 2 and 3) 

We will introduce some of the basic rules of 
probability using a simple biological example 
with a dichotomous outcome - eutrophication in 
lakes (e.g. Carpenter et al. 1998). Let P(A) be the 
probability that a lake will go eutrophic. Then 
P( -A) equals one minus P间， i.e. tbe probabili可 of

not A is one minus the probability of A. In our 

example, the probabili走y that the lake will not go 
eutrophic is one minus the probability that it will 
go eutrophic 

Now consider the P(B) , the probability that 
there will be an increase in nutrient input into 
the lake. The joint probability of A and B is 

P(AUB) 二 P(A) + P(B) - P(A nB) (1.1) 

i.e. the probability thatA or B occur 问AUB)] is tbe 
probability of A plus the probability of B minus 
the probability ofA and B both occurring ]P(A n B)]. 
In our example, the probability that the lake will 
go eutrophic or that there will be an increase in 
nutrient input equals the probability that the lake 
will go eutrophic plus the probability that the 
lake will receive increased nutrients minus the 
probability tbat the lake will go eutrophic and 
receive increased nutrients. 

These simple rules lead on to conditional prob­
abi1ities, which are very important in practice 
The conditional probability ofA, given B, is; 

P(A IB) =p(AnB)/P(B) (1.2) 

i.e. the probability that A occurs, given that B 
occurs , equals the probability of A and B both 
occurring divided by the probability of B occur­
ring. In our example , the probability that the lake 
will go eutrophic given that it receives increased 
nutrient input equals the probability that it goes 
eutrophic and receives increased nutrients 
divided by the probability that it receives 
increased nutrients 

We can combine these rules to develop 
anotber way of expressing conditional probabili ty 

Bayes Theorem (named after 出e eighteentb­
century English mathematician, Thomas Bayes) 

P(B IA)P(A) 
P(AIB) nfnl ，， \nf~~- ， I'~:~~--I A\ nf (1.3) 

P(B IA)P(A) + P(B I-A)P( -A) 

η1Îs formula allows us to assess the probability of 
an eventA in the light ofnew information , B. Let's 
de直ne some terms and then show how this some­
what daunting formula can be useful in practice 
P(A) is termed the prior probability of A - it is the 
probability of A prior to any new information 
(about B). In our example, it is our probability ofa 
lake going eutrophic, calculated before knowing 
anything about nutrient inputs , possibly deter­
mined from previous studies on eutrophication in 

「斗

lakes. P(B IA) is the likelihood of B being observed , 

given that A did occur [a similar interpretation 
exists for p(B I-A)]. The likelihood of a model or 
hypothesis or event is simply the probability of 
observing some data assuming the model or 
hypothesis is true or assuming the event occurs 
In our example , p(B IA) is the likelihood of seeing 
a raised level ofnutrients , given that the lake has 
gone eutrophic (A). Finally, p(A I B) is the posterior 
probabili可 ofA, the probability of A after making 
the observations about B, the probability of a lake 
going eutrophic after incorporating the informa 
tion about nutrient input. This is what we are 
after with a Bayesian analysis, the modification of 
p口or information to posterior information based 
on a likelihood (Ellison 1996) 

Bayesτheorem tells us how probabilities might 
change based on previous evidence. It also relates 
two forms of conditional probabilities - th巳 prob­

ability of A given B to the probability of B given A 
Berrγ(1996) described this as relating inverse 
probabilities. Note that, although our simple 
example used an event (A) that had only two po公
sible outcomes , Bayes 岛rmula can also be used for 
events that have multiple possible outcomes 

In practi世， Bayesτheorem is used for estimat­
ing parameters ofpopulations and testing hypoth­
eses about those parameters. Equation 1.3 can be 
simpli自ed considerably (Berry & Stangl 1996, 

Ellison 1996): 

P(dataI8)P(8) 
P(8Idata)二」二二ι立工三

P(data) 
(1.4) 

where θIS a paramet盯 to be estimated or an 
hypothesis to be evaluated , p(创 is the "uncondi­
tional" prior probability of 8 being a particular 
value , P(data I 的 is the likelihood of observing the 
data if 8 is that value , p(data) is the "uncondi­
tional" probability of observing the data and is 
used to ensure the area under the probability dis­
tribution of (J equals one (termed "normaliza­
tion"), and p( 8 I data) is the posterior probability of 
(J conditional on the data being obse凹ed.τhis

formula can be re-expressed in English as 

posterior probabili可αlikelihood X 
prior probability (1 .5) 

While we don't advocate a Bayesian philosophy in 
this book, it is important for biologists to be aware 

PROBABILlTY DISTRIBUTIONS 

of the approach and to consider it as an alterna 
tive way of dealing with conditional probabilities 
We will consider the Bayesian approach to estima 
tion inαlapter 2 and to hypothesis testing in 
Chapter 3 

1,5 I Probability distribution 

A random variable will have an associated prob­
ability distribution where different values of the 
variable are on the horizontal axis and the rela­
tive probabilities ofthe possible values ofthe var­
iable (the sample space) are on the vertical axis. 
For discrete variables, the probabili戈y distribu. 
tion will comprise a measurable probabiliry- for 
each outcome, e.g. 0.5 for heads and 0.5 for tails 
in a coin toss , 0.167 for each one of the six sides 
of a fair die. The sum of these individual probabil 
ities for independent events equals one 
Continuous variables are not restricted to inte 
gers or any speC1自c values so there are an infinite 
number ofpossible outcomes. The probability dis 
tribution of a continuous variable (Figure 1.1) is 
often termed a probability density function (pdf) 
where the vertical axis is the probability density 
of the variable I.f{y)], a rate measuring the prob 
ability per unit of the variable at any particul盯
value ofthe variable (Antelman 1997). We usually 
talk about the probability associated with a range 
ofvalues , represented by the area under the prob­
ability distribution curve between the two 
extremes of the range. This area is determined 
from the integral ofthe probability density from 
the lower to the upper value , with the distribu 
tion usually normalized so that the total prob­
ability under the curve equals one. Note that the 
probability of any particular value of a continu 
ous random variable is zero because the area 
under the curve for a single value is zero 
(Kleinbaum et a l. 1997) - this is important when 
we consider the interpretation of probabiliry- dis 
tributions in statistical hypothesis testing 
(Chapter 3) 

In many ofthe statistical analyses described in 
this book, we are dealing with two or more vari 
ables and our statistical models will often have 
more than one parameter.τben we need to switch 
from single probability distributions to joint 
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10 |INTRODUCTION 

Probab i1îty 

distributions for random variables 
following four common 
distributions. For the P，。因。n
distribution. we show the I pω 
distribution for a rare event and a 
common one, showing 甜、e shift o( 
the distribution from skewed to 
approximately symmetrical 

Normal Exponential 

probability distributions 
where probabilities are meas-
ured , not as areas under a 
single curve. but volumes P(y) 
under a more complex distri­
bution. A common joint pdf is 
the bivariate normal distribu­
tion. to be introduced in 
Chapter 5 

Probability distributions nearly always refer to 
the distribution ofvariables in one or more popu­
lations 咀le expected va1ue of a random variable 
[E(Y)]is simply the mean (μ) of its probability dist口­
butionτhe expected value is an important concept 
in applied statistics - most modeling procedures 
are trying to model the expected value of a random 
response variable. The mean is a measure of the 
center of a distribution - other measures include 
the median (the middle value) and the mode (出e
most common value). Itis also important to be able 
to measure the spread of a distribution and the 
most common measures are based on deviations 
仕om the center. e.g. the variance is measured as 
the sum of squared deviations from the mean. We 
will discuss means and variances. and other meas 
ures of the center and spread of distributions. in 
more detail in Chapter 2 

1.5.1 Distributions for variables 
Most statistical procedures rely on knowing the 
probability distribution of the variable (or the 
error terms 仕om a statistical model) we are ana­
Iyzing. There are many probability distributions 
that we can de!ine mathematically (Evans et al 
2000) and some of these adequately describe the 
distributions ofvariables in biology. Let's consider 
continuous variables first 

The normal (also termed Gaussian) distribu­
tion is a symmetrical probability distribution 

Poisson Lognormal 

「
PROBABIUTY DISTRIBUTIONS 11 

ou tcomes is sometimes called a Bernoulli trial 
and we often call the rnro possible outcomes 
success and f;副lure. We will only consider a sta­
tionary Bernoulli trial. which is one where the 
probability of success is the same for each trial , i.e 
the trials are independent 

The probability distribution ofthe number of 
successes in n independent Bemoulli trials is 
called the binomial distribution. a very important 
probability distribution in biology 

FM=tr(1-7)ny (1.8) 

y y 

variable is normally distributed (suggesting a 
simple trans岛rmation to nonnality - see Chapter 
4). Measurement variables in biology that cannot 
be less than zero (e.g. length. weight. etc.) often 
follow lognormal distributions. In skewed distri 
butions like the lognormal, there is a positive rela 
tionship between the mean and the variance 

There are some other probability distributions 
for continuous variables that are occasionally 
used in specific circumstances τhe exponential 
distribution (Figure 1.1) is another skewed distri­
bution that often applies when the variable is the 
time to the first occurrence of an even t (Fox 1993 , 

Har口son & Tamaschke 1984). such as in failure 
time analysis. This is a single parameter (λ) distri­
bution with the following probability density 
且lnction

.Ily) =λe-Ay 

where 1/λis the mean time to first occurrence. Fox 
(1993) provided some ecological examples 

The exponential and normal distributions are 
members of the larger family of四ponential dis­
tributions that can be used as error distributions 
for a variety of linear models (Chapter 13). Other 
members of this family include gamma dist口bu
tion for continuous variables and the binomial 
and Poisson (see below) for discrete variables. 

Two other probability distributions for contin­
uous variables are also encountered (albeit rarely) 
in biology. The tw研parameter Weibull distribu­
tion varies bernreen positively skewed and 
symmetrical depending on parameter values, 

al though versions wi th three or more parameters 
are described (Evans et a1. 2000)τhis distribution 
is mainly used for modeling failure rates and 
times. The beta distribution has two parameters 
and its shape can range 仕om U toJto s严nmetri­

cal. The beta distribution is commonly used as a 
prior probability distribution for dichotomous 
variables in Bayesian analyses (Evans et al. 2000) 

There are also probability distributions for dis­
crete variables. Ifwe toss a coin, there are two pos­
sible outcomes - heads or tails. Processes with 
only two possible outcomes are common in 
biology. e.g. animals in an experiment can either 
live or die, a particular species of tree can be 
either present or absent 仕om samples from a 
forest. A process that can only have one of two 

(1.7) 

where p(y=γ) is the probabili可 of a particular 
value (y) of the random variable (Y) being r suc 
cesses out of n trials ， ηis the number of trials and 
7T is the probability of a success. Note that n. the 
number oftrials is :fixed , and therefore the value 
of a binomial random variable cannot exceed n 
The binomial distribution can be used to calculate 
probabilities for di旺:erent numbers of successes 
out of n trials. given a known probability of 
success on any individual trial. It is also important 
as an error distribution 岛r modeling variables 
with binary olltcomes using logistic regression 
(Chapter 13). Ageneralization ofthe binomial dis 
tribution to when there are more than two pos 
sible outcomes is the multinomial distribution , 

which is the joint probability distribution of 
multiple outcomes 仕om n fixed trials 

Another very important probability distribu 
tlOn 岛r discrete variables is the Poisson distribu 
tion. which usually describes variables repre­
senting the number of (usually rare) occurrences 
of a particular event in an interval of time or 
space. i.e. counts. For example, the number of 
organisms in a plot, the number of cells in a 
microscope field of view, the number of seeds 
taken by a bird per minute. The probability dist口
bution of a Poisson variable is 

with a characteristic bell-shape (Figure 1.1). 1t is 
defined as: 

肿在e-(Y 州 (1.6) 

ρμ..' 

同y=巾τ「 (1.9) 

where .Ily) is the probability density of any value y 
of Y. Note that the normal distribution can be 
defined simply by the mean (JL) and the variance 
(的. which are independent of each other. AlI 
other terms in the equation are constants. A 
normal distribution is often abbreviated to 
N(Y:μ，的. Since there are infinitely many possible 
combinations of mean and variance, there is an 
infinite number ofpossible nonnal distributions 
The standa时 normal distribution (z distribution) 
is a normal distribution with a mean of zero and 
a variance of one. The normal distribution is the 
most important probability distribution for data 
analysis; most commonly used statistical proce­
dures in biology (e.g.linear regression , analysis of 
variance) aSSllme that the variables being ana 
Iyzed (or the deviations 仕om a fitted model) 
followa normal distribution 

The normal distribution is a symmetrical prob­
ability distribution. but continuolls variables can 
have non-symmetrical distributions. Biological 
variables commonly have a pos山vely skewed dis 
tribution, Ï.e. one with a long 口ght tail (Figure 
1.1). One skewed distribution is the lognormal dis 
tribution. which means that the logarithm of the 

where P(y = r) is the probability that 出e number 
of occurrences of an event (y) equals an integer 
value(r=O. 1. 2...).μis the mean (and variance) of 
the number ofoccurrences. A Poisson variable can 
take any integer value between zero and infinity 
because the number of trials. in contrast to the 
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binomial and the multinomial, is not tìxed. One of 
the characteristics of a Poisson distribution is that 
the mean (fL) equals the variance (0"). For small 
values of μ， the Poisson distribution is positively 
skewed bu t once μis greater than about five , the 
distribution is 可mmetrical (Figure 1.1) 

τ'he Poisson distribution has a wide range of 
applications in biology. It actually describes the 
occurrence of random events in space (or time) 
and has been used to examine whether organisms 
have random distributions in nature (Ludwig & 

Reynolds 1988). It also has wide application in 
many applied statistical procedures , e.g. counts in 
cells in contingency tables are often assumed to 
be Poisson random variables and therefore a 
Poisson probability distribution is used for the 
error tefffiS in log-linear modeling of contingency 
tables (Chapter 14) 

A simple example might help in understand 
ing the difference between the binomial and the 
Poisson distributions. If we know the average 
number of seedlings of mountain ash trees 
(Eucalyptus regnans) per plot in some habitat, we 
can use the Poisson distribution to model the 
probability of dif也rent numbers of seedlings per 
plot, assuming independent sampling.τhe bino 
mial distribution would be used if we wished to 
model the number ofplots with seedlings out ofa 
fixed number of plots. knowing the probability of 
a plot having a seedling 

Another useful probability distribution for 
counts is the negative binomial (\νhi te & Bennetts 
1996). lt is defined by two parameters , the mean 
and a dispersion parameter, which measures the 
degree of"clumping'" in the distribution 叭币1Ïte & 

Bennetts (1996) pointed out that the negative 
binomial has two potential advantages over the 
Poisson for representing skewed distributions of 
counts oforganisms: (i) the mean does not have to 
equal the variance , and (ii) independence oftrials 
(samples) is not required (see also Chapter 13) 

These probability distributions are very impor­
tant in data analysis. We can testwhether a partic­
ular variable follows one of these dist口butions by 
calculating the expected 仕'equencies and compar­
ing them to 0 bserved 仕equencies with a goodness­
of-fit test (Chapter 14). More importantly. we can 
model the expected value of a response variable 
[E(η1 against a range of predictor (independent) 

variables ifwe know the probability distribution 
of our response variable 

Distributions for statistics 1.5.2 
The remaining theoretical distributions to 
examine are those used for determining probabil­
ities of sample statistics , or mod出cations thereof. 
τhese distributions are used extensively for esti­
mation and hypothesis testing. Four particularly 
important ones are as follows 

1.τhe Z or normal distribution represents 
the probability distribution of a random variable 
that is the ratio of the difference between a 
sample statistic and its population value to the 
standard deviation of the population statistic 
(Figure 1.2) 

2. Student"s t distribution (Figure 1.2) 
represents the probability distribution of 
a random variable that is the ratio of the 
difference between a sample statistic and its 
population value to the standard deviation of 
the distribution of the sample statistic. The t 
distribution is a symmetrical distribution very 
similar to a normal distribution , bounded by 
infini可 in both directions. lts shape becomes 
more similar with increasing sample size 
(Figure 1.2). We can convert a single sample 
statistic to a t value and use the t distribution 
to determine the probability of ob阻ining that 
tvalue (or one smaller or larger) 岛r a specified 
value of the population parameter (Chapters 2 
and 3) 

3. x' (chi-squar巳) distribution (Figure 1.2) 
represents the probability distribution of a 
variable that is the square ofvalues 仕Qma
standard normal dist口bution (Section 1.5) 
Values 仕'Qm aX乒2dω15旺tr口ibut

zero and infini丑1巧粤汇 Var口iances have a ,r dis旺tribu-
tion s皿ot由hi阻sd副IS且tr口ibution i臼s used 白岛or interval 
estimation ofpopulation variances (Chapter 2) 
We can also use the ,r distribution to determine 
the probability of obtaining a sample difference 
(or one smaller or larger) between observed 
values and those predicted by a model (Chapters 
13 and 14). 

4. F distribution (Figure 1.2) represents the 
probability distribution of a variable that is the 
ratio oftwo independent x' variables , each 

FFR 

z 

a 

P(y) 

F 

Pω 

a 

y 

divided by its df(degrees of仕eedom) (Hays 1994) 
Because variances are distributed as ,r, the F 
distribution is used for testing hypotheses about 
ratios ofvariances. Values from the F distribu­
tion are bounded by zero and infinity. We can 
use 出e F distribution to determine the prob­
ability of obtaining a sample variance ratio (or 
one larger) 岛r a specified value of the true ratio 
between variances (Chapters 50nwards) 

All 面our distributions have mathematical deri­
vations that are too complex to be of much inter­
est to biologists (see Evans et al. 2000). However, 

b 

1" 

c 

y 
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Probability 
for four common 

statistics. For 由et， x2， andF

distributions, we show distributions 
for three or four different degrees 
。.f freedom (a to d, in increasing 
。rder) ， to show how the shapes of 
these distributions change 

these distributions are tabled in many textbooks 
and prog田mmed into most statistical software , 

so probabilities of obtaining values 仕om each , 

within a specific range , can be determined. These 
distributions are used to represent the probability 
distributions of the sample statistics 怡， t, x' or F) 
that we would expect 仕om repeated random sam 
pling 仕om a population or populations. Different 
versions of each distribution are used depending 
on the degrees of 仕eedom associated with the 
sample or samples (see Box 2.1 and Figure 1.2) 
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I Cha阳 2

Estimation 

2.1 I Samples and populations 

Biologists usually wish to make inferences (draw 
conclusions) about a population. which is defined 
as the collection of all the possible observations of 
interest. Note that this is a statistical population, 

not a biological population (see below). The collec­
tion of observations we take 仕om the population 
is called a sample and the number of observations 
in the sample is called the sample size (usually 
given the symbol n). Measured characte口stics of 
the sample are called statistics (e.g. sample mean) 
and characteristics of the population are called 
parameters (e.g. population mean) 

The basic method of collecting the observa­
tions in a sample is called simple random sam. 
plingτ1lis is where any observation has the same 
probability ofbeingcollected. e.g. giving every rat 
in a holding pen a number and choosing a sample 

, 
of rats to use in an experiment with a rflndo~ 
number table. We rarely sample truly randomly in 
biology, often relying on haphazard sampling for 
practical reasons. The aim is always to sample in a 
manner that doesn't create a bias in favour of any 
observation being selected. Other 可pes of sam­
pling that take into account heterogeneity in the 
population (e.g. strat地ed sampling) are described 
in Chapter 7. Nearly all applied statistical proce­
dures that are concerned with using samples to 
make inferences (i.e. drawconc1usions) about pop­
ulations assume some form ofra口dom sampling 
If the sampling is not random , then we are never 
sure quite what population is represented by our 
sample. When random sampling 仕om clearly 

defined populations is not possible , then interpre­
tation of standard methods of estimation 
becomes more difficul t 

Populations must be defined at the start ofany 
study and this de且nition should include the 
spatial and te皿porallimits to the population and 
hence the spatial and temporallimits to our infer­
ence. Our formal sta tistical inference is restricted 
to these limits. For εxample， if we sample ftom a 
population of animals at a certain location in 
December 1996. then our inference is restricted to 
that location in December 1996. We cannot infer 
what the population might be like at any other 
time or in any other place. although yve can spec­
ulate or make predictions 

One of the reasons why c1assical statistics has 
such an important role in the biological sciences , 

particularly agriculture , botany, ecology, zoology, 

etc. , is thatwe can often de且ne a population ab6ut 
which we wish to make inferences and 仕om
which we can sample randomly (or at least hap­
hazardly). Sometimes the statistical population is 
also a biological population (a group ofindividu­
als of the same speci四). The reality of random 
sampling makes biology a little different 仕om
other disciplines that use statistical analyses for 
inference. For example , it is often difficult for 
psychologists or epidemiologists to sample ran 
domly because they have to deal with whatever 
subjects or patients are available (or volunteer!) 

η12: main reason 面or sampling randomly仕om
a c1early defined population is to use sample sta 
tistics (e.g. sample mean or variance) to estimate 
population paramete!'s ofinterest (e.g. population 
mean or variance) 白e population parameters 

FFF 
cannot be measured directly because the popula­
tions are usua11y too large , i 巳吐ley contain too 
many observations for practical measurement. It 
is important to remember that population param­
eters are usually considered to be fixed , but 
unknown, values so they are not random variables 
and do not have probability distributions. Note 
that this contrasts with the Bayesian approach 
where population parameters are viewed as 
random variables (Section 2.6). Sample statistics 
are random variables, because their values 

, depend on the outcome of the sampling experi 
ment, and therefore they do have probability dis 
tributions , called san1pling distributions 

"What are we after when we estimate popula­
tion parameters? A good estimator of a population 
parameter should have the 岛llowing characteris­
tics (Harrison & Tamaschke 1984, Hays 1994) 

• It should be unbiased , meaning that the 
expected value ofthe sample statistic (出emean
ofits probability distribution) should equal the 
parameter. Repeated samples should produce 
estimates which do not consistently under- or 
over-estimate the population parameter 

• It should be consistent so as the sample size 
increases then the estimator will get c10ser to 
the population parameter. Once the sample 
includes the whole population, the sample 
statistic will obviously equal the population 
parameter, by dennition 

• It should be effic四旺， meaning i t has the 
lowest variance among a11 competing esti 
mators. For example. the sample mean is a 
more efficient estimator of the population 
mean of a variable with a normal probabili可
distribution than the sample median, despi世

the two statistics being numerically equivalent 

There are two broad types of estimation 

1. point estimates provide a single value 
which estimates a population parameter, and 

2. interval estimates provide a range ofvalues 
that might inc1ude the parameter with a known 
probability, e.g. confidence intervals 

Later in this chapter we discuss different 
methods of estimating parameters. but, for now, 

let's consíder some common population parame­
ters and their point estimates 

COM问ON PARAMETERS AND STATISTICS 

2.2 I Common parameters and 

statistics 

Consider a population of observations of the vari­
able Y measured on a11 N sampling units in the 
population. We take a random sample of n obser 
vations (yγ Y" 儿， ...Yi，几) from the population 
We usually would like information about two 
aspects of the population , some measure of loca 
tion or central tendency (i.e. where is the middle 
of the population?) and some measure of the 
spread (i.e. how different are the observations in 
the population?). Common estimates of parame­
ters oflocation and spread are given in Table 2.1 
and illustrated in Box 2.2 

2.2.1 Center (Iocation) of distr阳tlon
Estimators 岛r the center of a distribution can be 
c1aSsi直ed into three general classes. or broad 可pes

(Huber 1981, Jackson 1986). First are L-estimators , 

based on the sample data being ordered 仕omsmall­
est to largest (order statistics) and then 岛rmlng a 
linearcombination ofweighted order statist口。The

sample mean Lv) , which is an unbiased estimator of 
the popula tion mean (叫， is an L-estimator where 
each observation is weighted by 1fn (Table 2.1)。

Other common L毛stimators include the fo11owing 

• The median is the middle measurement of a 
set of data. Arrange the data in order of 
magnitude (i.e. ranks) and weight all 
observations except the middle one by zero 
The median is an unbiased estimator ofthe 
population mean for normal distributions , 

is a better estimator ofthe center ofskewed 
distributions and is more resistant to outliers 
(extreme values very different to the rest of the 
sample; see Chapter 4) 

• The trimmed mean is the mean ca1culated 
after omitting a proportion (commonly 5%) of 
the highest (and lowest) observations , usually 
to deal with outliers 

• The Winsorized mean is determined as for 
trimmed means except the omitted obser­
vations are replaced by the nearest remaining 
value 

Second are M四estlmato白， where the weight­
ings given to the different observations change 

15 
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T able 2. I I Common population pa 

Parameter Statistic Formula 

n 

问ean (μ) y 
三扣

门

Median Sample median Y(n + 1)12 if n odd 

(Yo/2 十 Y0/2) + ,)/2 if n even 

Variance (σ2) s' 
2-, (y, - 9l' 
z 一1"'1 门|

2-, (Yi - yl' 
5恒nda时 deviation (σ) S 飞!~丁才
Median absolute deviation (MAD) Sample MAD median[ly, - median 11 

S 
Coeffkient of variation (凹) Sample 01 x 100 

y 
S 

Standard error of 9 (勾) S, vn 
S S 

95% confìdence interval forμ 9 - tQ.05(n- 1)百三11 :59+恼。')怕

gradually 仕om the middle of the sample and 
incorporate a measure of variability in the estima­
tion procedureτ'hey include the Huber M­
estirilator and the Hampel M-estimator, which l1se 
different functions to weight the observations 
τ'hey are tedious to ca1culate , requiring iteratìve 
procedures , but maybe use且11 when outliers are 
present because they dow咀weight extreme val ues 
τbey are not commonly used but do have a role in 
robust regression and ANOVA techniques for ana­
lyzing linear models (regression in Chapter 5 and 
ANOVA in Chapter 8) 

Finally, R-estimators are based on the ranks of 
the obse凹ations rather than the observations 
themselves and form the basis for many rank­
based 飞on-paramet四"tests (Chapter 3). The only 
common R-estimator is the Hodges-Lehmann esti­
mator，飞"，hich is the median of the averages of a11 
possible pairs of observations 

For data with outlie凹， the median and 
trimmed or Winsorized means are the simplest to 
calculate a1though these and M- and R-estimators 
are now commonly available in statistical software 

1tlili---1!i 

2.2.2 Spread or variability 
Various measures of the spread in a sample are 
provided inτ'able 2.1τhe range，飞rVhich is 吐1e dif­
ference between the largest and smallest observa 
tion , is the simplest measure of spread , but there 
is no c1ear link between the sample range and 
the population range and, in general, the range 
wi11 rise as sample size ìncreasesτhe sample var 
lance，飞rVhich estimates the population variance , 

is an important measure of variability in many 
statistical analyses. The numerator of the 
formula is called the sum of squares (55 , the sum 
of squared deviations of each observation from 
the sample mean) and the variance is the average 
of these squared deviations. Note that we might 
expect to divide by ηto cal口]late an average , but 
then 52 consìstently underestimates σ2 (i.e. it is 
biased), so we divide by n -1 to make s' an unbi­
ased estimator of 0'2. The one difficulty with S2 is 
that its units arεthe square of吐le original obser­
vations , e.g. if the observations are lengths in 
mm, then the variance is in mm2 

t an area not a 
length 

「
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95% of observations 
咽，

μ+ 1.96σ 

equivalent formulae that can be found in any sta 
tistics textbook that are easier to use 飞I>'ith a hand 
ca1culator. We assume that, in practice , biologists 
will use statistical software to calculate these sta­
tistics and. since the alternative formulae do not 
assist in the understanding ofthe concepts, we do 
not provide them. 

2, 3 I Standard errors and confìdence 

intervals for the mean 

2 , 3.1 Normal distributions and the 
Central LimitTheorem 

Having an estimate of a parameter is only the 且rst

step in estimation. We also need to lmow how 
precise our estimate is. Our estimator may be the 
most precise of a11 the possible estimators , bu t if i ts 
value sti11 varies widely under repeated sampling, 

it will not be very useful 岛r inference. If repeated 
sampling produces an estimator that is very con 
sistent, then it is precise and we can be confìdent 
that it is c10se to the parameter (assuming that it 
is unbiased).币le traditionallogic for determining 
precision of estimators is well covered in almost 
every introductory statistics and biostatistics book 
(we strongly recommend 50kal & Rohlf1995) , so we 
will describe it only briefly, using normally distrib­
uted variables as an example 

Assume that our sample has come from a 
normally distributed population (Figure 2.1). For 
any normal distribution, we can easily deter­
mine what proportions of observations in the 

P(z) 

μ-1.96σ μ 

Plot of normal probabilìty distribution，由。wmg
which values 95% of all values occur. 

The sample standard deviation, which esti 
matesσ" the population standard deviation , is the 
square root of the variance. In contrast to the var. 
iance, the standard deviation is in the same units 
as the original observations 

The coefficient of variation (αis used to 
compare standard deviations between popula 
tions with dif坠rent means and it provides a 
measure of variation that is independent of the 
measurement units. The sample coeffìcient of 
variation 01 describes the standard deviation as a 
percentage of the mean; it estimates the popula 
tion 01. 

Some measures of spread that are more robust 
to unusual observations include the following 

·η1e median absolute deviation (MAD) is 
less sensitive to outliers than the above 
measures and is the sensible measure of 
spread to present in association with 
medians 

• The interquartile range is the difference 
between the flrst quartile (the observation 
which has 0.25 or 25% ofthe observations 
below it) and the third quartile (the observa­
tion which has 0.25 ofthe observations above 
it). It is used in the construction ofboxplots 
(Chapter 4) 

For some of these statistics (especially the 
variance and standard deviation) , there are 
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about the population parameter. which is 且xed
We will discuss the interpretation of confidence 
intervals in the next section. The only problenl is 
thatweveryra四lyknowσin practice, 50 we never 
actually know 巧; we can only estima te the stan­
dard error 仕'om s (sample standard deviation) 
Our standard normal distribution of sample 
means is now the distribution of (ÿ 川岛This is 
a random variable called t and it has a probabili可
distribution that is not quite normal. It follows a 
t distribution (Chapter 1) , which is flatter and 
more spread than a normal distribution 
Therefore , we must use the t distribution to calcu­
late confìdence intervals 岛r the population mean 
in the common situation of not knowing the pop 
ulation standard deviation 

The t distribution (Figure 1.2) is a symmetrical 
probability distribution centered around zero 
and , like a normal distribution, it can be defined 
mathematically. Proportions (probabilities) for a 
standard t distribution (with a mean of zero and 
standard de说ation of one) are tabled in rnost sta 
tistics books. In contrast to a norrnal distribution , 

however, t has a slightly difl岳rent distribution 
depending on the sample size (well , for mathe 
matical reasons , we define the different t distribu 
tions by n - 1, called the degrees of 仕eedom (df) 
(see Box 2.1). rather than n). This is because s pro 
vides an impre口se estimate ofσif the sarnple size 
is small, increasing in precision as the sample size 
increases. When n is large (say >3时， the t distribu 
tion is very similar to a normal distribution 
(because our estimate of the standard error based 
on 5 will be very close to 吐le real standard error) 
Remember. the z distribution is simply the prob 
ability distribution of (yμ)/σor (ÿ一 μ)/σ。 ifwe

are dealing wÏth sample means. The t distribution 
is simply the probability distribution of (ÿ μ)/s; 

and there is a different t distribution for each df 
(η1) 

The confidence interval (95% or 0.95) for the 
population mean then is 

ηle standard error of the mean is telling us 
about the variation in our sample mean. It is 
termed "error" because it is telling us about the 
error in usingy to estimateμ(Snedecor & Cochran 
1989). If the standard error is large , repeated 
samples would likely prod uce very di他rent

means , and the mean of any single sample might 
not be c10se to the true population mean. We 
would not have much confidence that any speci且c
sample mean is a good estimate ofthe population 
mean. If the standard error is small , repea ted 
samples would likely produce similar means , and 
the mean of any single sample is more likely to be 
c10se to the true population mean. Therefore. we 
would be quite confident that any specific sample 
mean is a good estimate ofthe population mean 

2.3,3 Confìdence intervals for population 
mean 

In Equation 2.1 , we converted any value 丘'om a 
normal distribution into its equivalent value 仕'Om

a standard normal distribution, the z score 
Equivalently, we can convert any sample mean 
into its equivalent value 仕um a standard normal 
distribution of means using: 

Y 

• As the sample size increases, th巳 probability

distribution of means of samples from any dis 
tribution will approach a normal dist口bution
This result is the basis ofthe Central Limit 
Theorem (Figure 2.2) , 

• The expected value or mean ofthe probability 
dis仕ibution of sample means equals the mean 
of the population (μ) 仕'Om which the samples 
飞.vere taken 

Y 

/ \ 
Y 

同y)

(2.6) P{y tomn1)SF=μ :::::;y+tO .O町>-l)s;l =0.95 

where t~ ~_， .. is the value 仕om the t distribution 
E对n- 1)

with n -1 dfbetween which 95% of all t values lie 
and s;;; is the standard error ofthe mean. Note that 
the size of the interval will depend on the sample 
size and the standard deviation of the sample , 

both of which are used to ca1culate the standard 

(2.4) 

where the denominator is simply the standard 
deviation of the mean， σl飞/η ， or standard error 
Because this z score has a normal distribution. we 
can determine how confidentwe are in the sample 
mean , i.e. how c10se it is to the true population 
mean (the mean of the distribution of sample 
means). We simply determine values in our distri­
bution of sample means between which a given 
percentage (often 95% by convention) of means 
occurs , i.e. between which values of (ÿ - J1.)/(J'; do 
95% of values lie? As we showed above. 95% of a 
normal distribution falls between μ :t 1.960σ， so 
95% of sample means fall between μ :t 1.96巧 (1.96

times the standard deviation ofthe distribution of 
sample means , the standard error) 

Now we can combine this information to make 
a confidence interval 缸 μ

「
r

yμ 
z= 

σp 

2.3,2 Standard error of the sample mean 
Ifwe consider the sample means to have a normal 
probability distribution, we can ca1culate the vari. 
ance and standard deviation ofthe sample means , 

just like we could ca1culate the variance of the 
observations in a single sample τhe expected value 
ofthe standard deviation ofthe sample means is 

(2.2) 

where σis the standard deviation of the original 
population from which the repeated samples 
were taken and n is the size of samples 

We are rarely in the position of having many 
samples from the same population , so we est1-

mate the standard deviation of the sample means 
仕om our single sample τbe standard deviation of 
the sample means is called the standard error of 
the mean 

。j= Y;;

(2.1) 

τhese deviations are called normal deviates or 
standard scores. This z transformation in effect 
converts any normal distribution to the standard 
normal dist口bution

Usually we only deal with a single sample 
(with n observations) 仕om a popula tion. If we took 
many samples from a population and ca1culated 
all their sample means , we could plot the 仕e
quency (probability) distribution of the sample 
means (remember that the sample mean is a 
random variable)τhis probabili可 distribution is 
called the sampling distribution of the mean and 
has three important characte 口stics

• 50% of population falls between μ :t 0.674σ 

• 95% of population fa11s between μ :t 1.960σ 

• 99% ofpopulation f;注lls between μ :t 2 .576σ 

τherefore， ifweknowμand u , we can work out these 
proportions for any no口nal distribution. These pr耻
portionshave beenca1culated and tabulated inmost 
textbooks , but only for the standard normal distri 
bution , which has a mean of zero and a standard 
deviation (orvariance)ofone. Touse these tables , we 
must be able to transform our sample observations 
to their equiva1ent values in the standard normal 
distribution. To do this , we calculate d凹natIons

仕om the mean in standard deviation umts 

population occur within certain distances 仕om
the mean: 

同y)

IlIustration of the 
Central Lim比

Theorem , where repeated samples 
刷th large n from any distribution 
will have sample means y川ha

normal distribution 

z 主二丘
(J' 

s-d 
P{y -1.96σy=μ :Sÿ+ 1.96σjl = 0.95 

This confidence interval is an interval estimate for 
the population mean, aithough the probability 
statement is actually about the interval, not 

(2.5) 
(2.3) 

where s is the sample estimate of the standard 
de甘ation of the original population and n is the 
sample size 

• The probability distribution of means of 
samples from a normal distribution is also 
normally dist口buted
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Box 2.1 I Explanation of degrees of freedom 

De哩陀es of freedom (df) is one of those terms that biologi白山e al1 the time in 处a
tl由cal anal严es but few probably really understand. We will 目tempt to make it a 
little clea陀r. The degrees of freedom is simply the number of observations in our 
臼mple 由at are "free to vary" when we a陀 e由mating the variance (Harrison & 

Tamaschke 1984). Since we have a廿eady determined the mean, then only n ~ I 
observations are fr陀e to vary because knowing the mean and n - I obse阳 ations ，

由e last observation is fìxed. A simple example - say we have a 臼mple of observa­
ti005, with values 3, 4 and 5. We know the sample mean (4) and we wish to esti­
mate the variance. Knowing the mean and Qne of the observations doesn't te l! us 
what the other two must be. But if we know the mean and tvvo of the observa­
tions (e.g. 3 and 4). 由e 盯nal observation is fb时 (it must be 5). 50, knowing the 
mean , only two observations (n - 1) a陪 free to va叩 As a general ru恒， the df is the 
number of observations minus the number of paramete巴 included in the foπnula 

for the variance (H盯rison & Tamaschke 1984) 

error, and also on the level of con且dence we 

require (Box 2.3) 
We can use Equation 2.6 to determine con岳

dence intervals for different levels of con自dence，

e.g 岛r 99% confidence intervals , simply use the t 
v.lue between which 99% of .11 t v.lues Iieτhe 
99% confidence inte凹.1 will be wider than the 
95% confidence interval (Box 2.3) 

2.3 .4 Interpretation of confìdence 
intervals for population mean 

It is very important to remember that we usually 
do not considerμa random variable but a 直xed.
albeit unknown , parameter and therefore the con­
fidence interval is not a probability statement 
about the population mean. We are not saying 
th盯e is a 95% probability thatμfalls within this 
specific interval that we have determined from 
our sample data;μ 1s且xed， so this confidence 
interval we have calculated for a single sample 
ei ther con tainsμor it doesn飞古1e probability 
associated with confidence intervals is inter 
preted as a long-run 仕equency， as discussed in 
Chapter 1. Different random samples from the 
same population will give different con白dence
intervals and ifwe took 100 samples ofthis size (n). 
and calculated the 95% confidence interval from 
each sample, 95 of the intervals would containμ 
and five wouldn't. Antelman (1997, p. 375) sum­
marizes a confidence interval succinctly as "。

one interval generated by a procedure that will 
give correct intervals 95% ofthe time" 

2.3.5 Standard errors for other statistics 
τhe standard error is simply the standard devia­
tion of the probability distribution of a spec泊c
statistic, such as the mean. We can, however, cal­
culate standard errors for other statistics besides 
the mean. Sokal & Rohlf (1995) have listed the for­
nlulae for standard errors for many different stat­
istics but noted that they might only apply for 
large sample sizes or when the population 仕om
which the sample came was normal. We can use 
the methods just described to reliably determine 
standard errors for statistics (and confidence 
intervals for the associated parameters) from a 
range of analyses that assunle normali帘. e.g 
regression coefficients. These statistics , when 
divided by their standard error，击。Ilow a t distri 
bution and , as such, confidence intervals can 
be determined for these statistics (confidence 
interval = tX standard error) 

When we are not sure about the distribution of 
a sample statistic , or know that its distribution is 
non-normal, then it is probably better to use resam 
plingmethods to generate standard errors (Section 
2.5). One important exception is the sample va口
ance , which has a known distribution that is not 
normal, i.e. the Central Limitτheorem does not 
apply to variances. To ca1culate confidence inter­
vals for the population variance , we need to use the 
chi-square (对) distribution. which is the distribu 
tion ofthe following random 飞rariable

x'~ (y-乒
σ" 

(2.7) 

FFFF 

Box 2.2川IWo巾de阻xa盯mp附le of es蚓tima筑ωtion川】
fo口r陀est臼edwa况te旷俨s白h晤e时ds
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lo呻忱 et 0 1. (2000) studied the chemistry of forested watersheds in the Catskill 
Mount邵阳 in New York 5tate. They chose 39 sites (observations) on 自rst and 
second 0时er streams and measure 才 the concentrations of ten chemical variables 
(N0

3
- , total organic N, total N, NH4 -, dissolved organic C. 504

奸， CI- ， Ca'+ , Mg轩l

H+), averaged over由陀e years , and four watershed variables (maximum elevation, 

日mple elevation , length of stream, V、!atershed area). We will assume that the 39 sit自
陀P陪sent a random sample of possible sites in the central Catskills and wi l! focus 
on point estlmatloηfor location and spread of the populations for two 、 ariables ，

50
4
2- and 0-. and interval estimation for the population mean of these two var-

iables. We also created a modi自ed version of 504
2- where we 陪同aced the largest 

旧lueσ2.1μmoll- I at site BWS6) byaηextreme value of 200 μmol 1- 1 to illus 
trate the robustness of various statistics to OIJ甘 lers

Boxplots (Chapter 4) for both variables a仁e presented in Figl 陀 4.3. Note that 
504

2- has a symmet门 cal distribution whe陀as 0- is po时 ely skewed with outli­
ers ('咀Ll ues ve叩 di他陪nt from rest of sample). Summary statistics for 504

2- (orig­
inal and modifìed) and 0- a陀 p陀sented below. 

Estimate 504
2 问odifìed 50

4
2 -

Mean 61.92 65.20 

Median 62.10 62.10 

5克 trimmed mean 61.90 61.90 

Huber's M-estimate 61ι7 61.67 

Hampel's M-estimate 61.85 6 1.62 

Standa时 devi日.tion 5.24 22.70 

Inter可uartile range 8.30 8.30 

问ed陆n absolute 4.30 4.30 
deviation 

Standa时 error of 
mean 

0.84 3.64 

95% confìdence 
interval for mean 

60.22-63.62 57.84-72.56 

CI-

22.84 

20.50 

20.68 

20.21 

19.92 

12.38 

7.80 

3.90 

1.98 

18.83-26.86 

Given the symmetrical distribution of 50/- , the mean and median are simila 产

as expected. In contrast. the mean and the media门 are different by more than 甘vo
units for CI- , as we wouJd expe吐 for a skewed distribution. The median is a more 
reliable estimator of the 仁enter of the skewed distribution for 0- , and the various 
robust estimates of Ic 二 ation (median, 5% trimmed mean , Huber's and Hampel's 
M-estimates) all give similar values. The standa时 deviation for CI- is also affected 
by the outliers, and t 飞 e confldence inte广vals are relatively wide 

The modifìed version of 50/-- also 5扣 ows the sensitivity of the mean and the 
standard deviation to outliers. Of the robust estimators for location, on竹 Hamp时's

M-estimate changes marginally, whereas the mean changes by more than three units. 
5imilar 协 the standard deviation (and the陀fore the standard error a门d 95% 

21 
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confìdence interval) is much g陀ater for the modifìed 旧riable ， whe陀as the inter­
quartile range and the median absolute deviation a陀 U 丁 afFected by the outlier. 

We also calculated bootstrap estimates forthe mean and the median of SO 4 2-

concentratlo町， based on I 000 bootstrap samp阳。= 39) with replacement from 
the original sample of 39 5民es. The bootst日p estimate was the mean of the I 000 
bootstrap sample 血itistics ， the bootstrap standard error was the 白寸 da时 devia­

tion of the 1000 bootstrap sample statistiζ5 and 由e 95% confìdence interval was 

determined from 25th a门d 975th values of the bootstrap statistics arranged in 
ascendi咆 order. The two estimates of the mean were almost identical ,and although 
the standard error was smaller for the usual method, the peπentl陆 95% confìdence 
interval forthe bootstrap met广 Jd was narrowe巳 The t\No estimates for the median 
were identical, but the 七 00士strap method allows us to estimate a standard error and 

a confìdence interval 

Usual ßootstrap 

Mean 6 1.92 61.91 
Standard error 0.84 0.88 
95% confìdence interval 60.22• 63.62 己 J.36-63 .59

Median 61 .72 61 .72 
Standa时 error NA 1.34 
95% confìd巳nce interval NA 58.60-63.40 

Thef，同quency distributions of the bootstrap means and medians are presented 
in F咀U陀 2.4. The distribution ofbootstrap means is symmetrical whereas the boot­
strap distribution of medians is skewed. Thβrsζommonly the ca咒 and the con白­
dence interval for the median 巴 not symmetrical around the bootstrap estimate 
We al50 calculated the bias corrected bootstrap confìdence intervals. Forty nine 
percent of bootstrap means were below the bootstrap estimate of 61.91 , 50 t卡 e
七 as-cor陀cte出d conflden臼 interval is basically the same as the sta们 dar 才 bootstrap

Forty four percent of bootstrap medians were below the bootstrap estimate of 
61 刀，四 Zo ~ -0.151 and (泣。+ 1.96) ~ 1.658 and (泣。1.96) ~- 2.262. The pe俨
centiles，什om the normal cumulative distribution，盯'e 95.2% (upper) and 1.2% 
(Iower). Howeve r, because so m叫 ofthe bootstrap medians we陀 thesaπe value , 

these bias-co 陀 cted percentiles did not change the confìdence intervals 

τhis is simply the square of the standard z score 
discussed above (see also Chapter 1). Because we 
square the numerator，对 is always positive, 
rang:t吨 from zero to ∞ The x' distribution is a 
sampling distribution so , like the random variable 
t , there are different probability distributions for 
x' for different sample siz凹; this is reflected in the 
degrees offreedom (η1)_ For small df, the prob­
ability distribution is skewed to the right (Figure 
1.2) but it approaches normality as dfincreases 

Now back to the sample variance. It turns out 
that the probability distribution ofthe sample var­
iance is a chi-square distribution. Strictly speaking, 

(η l)s' 

σ2 
(2_8) 

is distributed as x' withη1 df (Hays 1994)_ We 
can rearrange Equation 2.8 , using the chi-square 
distribution , to determìne a con且dence interval 

for the variance 

P{巾 1) 泸(711)i一一一一三三σ2<" -, f ~O.95 (2.9) 
xi1xi-1| 

where the lower bound uses the K value below 
which 2_5% of all x' values fall alld the upper 
bound uses the;(! value abovewhich 2.5% ofall;(! 
values fall. Remenlber the 10吨;-run frequency 
interpretation of this confidence interval -
repeated sampling would result in confidence 
intervals of which 95% would include the true 

population variance. Confidence intervals on 

METHODS FOR ESTIMATING PARAMETERS 23 

Box 2.31 Effect of different sample variances, sample sizes 
and degrees of confìdence on confìdence interval 
for the population mean 

We will again use the data from Lovetl et 01. (2000) on the chemistηof forest启d
watersheds in the Catskill Mountains in New York State and focus on interval e式l

mation for the mean concentratlo门。f504 2- in all the possible sites that could have 

been sampled 

。riginal sample 
5ample (n = 39) with a mean concentratio门 01 50 ~ 2- of 61.92 and S 015_24. The t 
value for 95% con丑dence intervals with 38 df is 2.02. The 95% confìdence interval 
for population mean SO 4 2- is 60.22 - 63.62, i.e. 3.40 

Di胃erent sample variance 

5ample (n = 39) with a mean concentration ofSO/-- of 61.92 an 才 50110.4自 (twice

original). The r value for 95% confldence intervals 川th 38 df i5 2_02. The 95%ζon­
币dence interval for population mean S042- is 58.5 3 - 65.31 , i.e. 6.78 (cf. 3.40) 

So more variabil即 in population (and sample) results in a wider confldence 
interval 

Di胃erent sample size 

Sample (n = 20; half original) with a mean concentration of SO ~ 2- of 61.92 and S of 
5.24. The t value for 95% confìdence intervals with 19 df is 2.09. The 95% con币­
d凹ce interval for population mean 50/- i5 59.47 - 64.37, i.e. 4.90 (仁f 3.40) 

50 a 5 γlaller sample size result5 in wider interval because our estimates of s and 
号 a陀 1臼5 preClse 

Different level of confidence (99%) 
5ample (n = 39) with a meanζoncentration of 50/- of 61.92 and 5 of 5.24. The t 
value for 99% confìdence i 门tervals with 38 df is 2.71. The 95% con们dence interval 
lor populalÍon mean 50/- '5 59.65 - 64.20, i.e. 4.55 (cl. 3.40) 

50 requiring a g陀ater level of c。而dence results in a wider interval for a given 
n a们d 二

the variance where we correct the estimate to 
reduce bias. The logic of ML estimation is decep 
tively simple. Given a sample of observations from 
a population , we 位ld estimates of one (or more) 
paramet，凹(s) that maximise the likelihood of 
observing those data. To determine maximum 
likelihood estimators , we need to appreciate the 
likelihood function , which provides the likeli­
hood of the observed data (and there岛re our 
sample statistic) for all possible values of the 
parameter we are trying to estimate. For example , 

imagine we have a sample of observations with a 
sample mean of y 吐1e likelihood 且1nction， assum 
ing a normal distribution and for a given standard 

variances are very important for the interpreta­
tion of variance components in linear models 
(Chapter 8) 

σ
b
 

nH 
舍
，
、

岱
u

m •L Fa p-w 
俨
E

、
J
e
a

，
札H
P
F
E。

-
w

eaEM Jug rm da 
e

『

阴
阳
俨

A
吁

气
4

2.4_1 Maximum likelihood (问 L)
A general method 白。 r calculating statistics that 
estimate specific parameters is called Maximum 
Likelihood (ML)_ The estimates of population 
parameters (e.g. the population mean) provided 
earlier in this chapter are ML estimates , except for 
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possible para口leter values 

deviation , is the likelihood of .~ 
observing the data 自or a11 pos- g 
sible values of μ， the popula-ε 
tion mean. In general, for a ] 
parameter 0, the likelihood 主

且lnctlOll 15: 主.... 
'" (210)2 陆

叮
UJ a

川

nHH 
一
一

AO 
γ
J
 

L 

where flY,;O) is the joint prob­
ability distribution of y, and 0, 

i.e. the probability distribu­
tion ofY for possible vaJues of 
。 In many common situations , f{Yî;6) is a normal 
probabili可 distribution. The ML estimator of 6 is 
the one that maximizes this likelihood function 
Working with products (II) in Equation 2.10 is 
actually dif自cu1t in terms of computation so it is 
more common to maximize the log-likelihood 

function: 

" 町的二叫 II JlY，; 0) I 二 Zlnlb俨的l

For example , the ML estimator ofμ(knowing a") 
岛r a given sample is the value of μwhich maxi 
mises the likelihood of observing the data in the 
sample. If we are trying to estimateμfrom a 
normal distribution , then the flY，;μ) would be the 
equation for the normal dist口bution， which 
depends only on μand σ'. Eliason (1993) provides 
a simple worked example 

The ML estimator can be determined graphi 
cally by simply trying di能rent val ues of μand 
seeing which one maximizes the log-likelihood 
function (Figure 2.3). This is verytedious , however, 

and it is easier (and more accurate) to use some 
simple ca1culus to determine the value of μthat 
maximizes the likelihood function. ML estimators 
sometimes have exact arithmetical solutio时，
such as when estimating means or parameters for 
linear models (Chapters 8-12). In contrast, when 
analyzing some non-normal distributions , ML 
estimators need to be ca1culated using complex 
iterative algorithms (Chapters 13 and 14) 

It is important to realize that a likelihood is 

(2.11) 

;\…nator 

not the same as a probability and the likelihood 
function is not a probability distribution (Barnett 
1999, Hilborn & Mangel 1997).ln a probability dis­
tribution for a random variable , the parameter is 
considered 且xed and the data are the unknown 
variable忡. ln a likelihood function , the data are 
considered :fixed and it is the parameter that 
varies across a11 possible values. However, the like­
lihood of the data given a particular parameter 
value is related to the probability of obtaining the 
data assuming this particular parameter value 
(Hilborn & Mangel 1997) 

2.4.2 Ordinary least squares (OLS) 
Another general approach to estimatlng parame­
ters is by ordinary least squares (OLS). The least 
squares estimator 自or a given paramεter is the one 
that minimizes the sum of the squared differ­
ences between each value in a sample and the 
parameter, i.e. minimizes the following function 

n 

~[y，一旦的12

司;eOLSemnatorofμfor a given sample is the 

value ofμwhich minimises the sum of squared 

differences between each value in the sample and 

the estimate ofμ(i.e. 2:(y, - 5')2). OLS estimators are 

usually more straightforward to calculate than 

ML estimato凹， always having exact arithmetical 

solutionsτhe major application of OLS estima­

tion is when we arεestimating parameters of 

linear models (Chapter 5 onwards), where 

Equation 2.12 represents the sum of squared 

(2.12) 

RESAMPLl NG METHODS FOR ESTIMATION 25 

differences between observed values and those 

predicted by the model 

2.4.3 ML vs OLS estimation 

Maximum likelihood and ordinary least squares 

are not the only methods for estimating popula­

tion parameters (see Barnett 1999) but they are 

the most commonly used for the analyses we will 

discuss in this book. Point and interval estimation 

using ML relies on distributional assumptions , i.e 

we need to speci命 a probabili ty distribution for 

our variable or for the error terms from our statis­

tical model (see Chapter 5 onwards). When these 
assumptions are met, ML estimators are generally 
unbias时， for reasonable sample sizes , and they 
have minimum variance (i.e., they are precise esti­
mators) compared to otherestimators. In contrast, 

OLS point estimates require no distributional 
assumptions. and OLS estimators are also gener­
ally unbiased and have minimum variance 
However, for interval estimation and hypothesis 
testing, OLS estimators have quite restrictive d四­
tributional assumptions related to normality and 
patterns ofvariance 

For most common population pa四meters (e.g. 

叫， the ML and OLS estimators are the same when 
the assumptions of OLS are met. The exception is 
a' (the population variance) for which the ML esti­
mator (which uses ηin the denominator) is 
slightly biased , although the bias is trivial if the 
sample size is reasonably large (Neter et a1. 1996) 
In balanced linear models (linear regression and 
ANOVA) for which the assumptions hold (see 
Chapter 5 onwards), ML and OLS estimators of 
regression slopes and/or factor effects are identi 
cal. However, OLS is inappropriate 岛r some 
common models where the response variable(s) or 
the residuals are not distributed normally, e.g. 
binary and more general categorical data. 
η1erefore， generalized linear modeling (G山~s

such as logistic regression and log-linear models~ 
Chapter 13) and nonlinear modeling (Chapter 6) 
are based around ML estimation. 

2,5 Resampling methods for 

estlmation 

The methods described above for ca1culating stan­
dard errors for a statistic and con且dence intervals 

面。r a parameter rely on knowing two properties of 
the statistic (Dixon 1993). 

• The sampling dist口bution ofthe statist町，
usually assumed to be normal, i.e. the Central 
limit Theorem holds 

• The exact 岛rmula for the standard error (i.e 
the standard deviation of the statistic) 

These conditions hold for a statistic like the 
sample mean but do not obviously extend to other 
statistics like the median (Efron & Gong 1983). ln 
biology, we would occasionally like to estin1ate 
the population values ofmany measurements 面or
which the sampling distributions and variances 
are unknown τbese include ecological indices 
such as the intrinsic rate ofincrease (r) and dissim. 
ilari ty coefl直cients (Dixon 1993) and statistics 
仕om unusual types of analyses. such as the inter 
cept of a smoothing function (see Chapter 5; E仕on
& Tibshirani 1991). To measure the precision (i.e 
standard errors and con且dence intervals) ofthese 
types of statistics we must rely on alternati靶，
computer-intensive resampling methods. The tw'ü 

approaches described below are based on the 
same principle: in the absence of other informa 
tion , the best guess for the distribution ofthe pop 
ulation is the observations we have in Ollr sample 
The methods estimate the standard error of a stat 
istic and confidence intervals for a parameter by 
resampling 仕om the original sample. 

Good introductions to these methods include 
Crowley (199刻， Dixon (1993), Manly (1997) and 
Robertson (1991), and E仕on & Tibshirani (1991) 
suggest useful general applications.η1ese resam 
pling methods can also be used for hypothesis 
testing (Chapter 3). 

2.5.1 Bootstrap 
The bootstrap estimator was developed by Efron 
(1982). The sampling distribution of the statistic is 
determined empirically by randomly resampling 
(using a random number generator to choose the 
observations; see Robertson 1991), with replace­
ment，仕om the original sample , usually with the 
san1e original sample size. Because sampling is 
with replacement, the same observation can obvi­
ously be resampled so the bootstrap samples will 
be different 仕om each other η1e desired statistic 
can be determined 仕'om each bootstrapped 
sample and the sampling distribution of each 
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distributions of (a) bootstrap means 
and (b) bo。臼trap medians, based on 
1000 bootstrap samples (n = 39) of 
SO'/- for 39 sites from forested 
watersheds in the Catskill 
Mountains in N巳wYork State (data 
from Lovett et 01. 2000) 

statistic determinedτheboot. 
stra p estimate of the parame­
ter is simply the mean of the 

Frequency 

(a) 
300 

200 

100 

。
58 

staUsUcs 仕om the bootstrapped samples. The 
standard deviation of the bootstrap estimate (i.e 
the standard error of the statistic) 四日mply the 
standard deviation ofthe statistics 仕'Om the boot. 
strapped samples (see Figure 2.4) 

Techniques like the bootstrap can be used to 
measure the bias in an estimator, the difference 
between the actual population parameter and the 
expected value (mean) of the estimator. The boot 
strap estimate of bias 四日mply the difference 
between the mean of the bootstrap statistics and 
the statistic calculated from the original sample 
(which 四 an estimator ofthe expected value ofthe 
statistic); see Robertson (1991) 

Confidence intervals for the unknown popula. 
tion parameter can also be calculated based on 
the bootstrap samples. There are at least three 
methods (Dixon 1993, E仕on & Gong 1983, 

Robertson 1991). First is the percentile method , 

where confidence intervals are calculated directly 
from the 仕equency distribution of bootstrap sta. 
tistics. For example. we would arrange the 1000 
bootstrap statistics in ascending order. Based on 
1000 bootstrap samples , the lower limit ofthe 95% 
confidence interval would be the 25th value and 
the upper limit of the 95% confidence interval 
would be the 975th value; 950 values (95% of the 
bootstrap estimates) would fall between these 
values. A句ustmen臼 can easily be made for other 
confidence intervals , e.g. 5th and 995th value for 
a 99% confidence interval 

Unfortunately, the distribution of bootstrap 
statistics is often skewed. especially for statistics 
other than the mean. The confìdence intervals cal­
culated using the percentile method will not be 
句rmmetrical around the bootstrap estimate ofthe 
parameter, so the confidence intervals are biased 

60 62 64 66 
Mean 

(b) 
300 

200 

100 

。
S8 60 62 64 66 

Median 

τhe other two methods 面or calculating bootstrap 
confìdence intervals correct 岛r this bias 

The bias.corrected method first works out the 
percentage of bootstrap samples with statistics 
lower than the bootstrap estimate. This is trans­
formed to its equivalent value 仕om the inverse 
cumulative normal dist口bution (20) and this value 
used to modi命 the percentiles used for the lower 
and upper limits ofthe con白dence inte凹al

95% percentiles =φ(220 ='= 1.96) (2.13) 

where φis the normal cumulative distribution 
function. So we determine the percentiles for the 
values (220 + 1.96) and (220 -1.96) 仕om the normal 
cumulative distribution function and use these as 
the percenti1es for our confidence inte凹al. A 
work，巳d example is provided in Box 2.2 

τhe third method, the accelerated bootstrap , 

且lfther corrects forbias based on a measure ofthe 
intluence each bootstrap statistic has on the 直nal
estimate. Dixon (1993) provides a readable expla. 
natlOn 

2.5.2 Jackknife 
The jackknife is an historically earlier alternative 
to the bootstrap for ca1culating standard errors 
that is less computer intensive. The statistic is cal­
culated 仕om the full sample of n observations 
(call it 的， then 仕om the sample with first data 
point removed (0' ,), then from the sample with 
second data point removed ((jI~2) etc. Pseudovalues 
for each observation in the original sample are 
ca1cula ted as 

。1=nt严 (η 1)0'; (2.14) 

where (jI~j is the statistic calculated from the 
sample with observation i omitted. Each pseud萨

F阳一
value is simply a combination of two estimate5 of 
the statistic , one ba5ed on the whole sample and 
one based on the removal of a particular obse凹a­

uon 
τhe Jac险nife estimate of the parameter is 

simply the mean ofthe pseudovalues (8). The stan­
dard deviation ofthejackknife estimate (the stan. 
dard error ofthe estimate) is 

yn:1 ~(8';-Õ)2 (2.15) 

Note that we have to assume that the pseudoval­
ues are independent of each other for these calcu­
lations (Crowley 1992, Roberston 1991), whereas 
in reality they are not. Thejackknife is not u5ually 
used for confidence intervals becaU5e 50 few 
samples are available if the original sample size 
was small (Dixon 1993). However, Crowley (1992) 
and Robertson (1991) suggested that if normality 
of the pseudovalues could be assumed , then con­
fidence intervals could be calculated as usual 
(using the t dist口bution because of the small 
number of estimates) 

Bayesian inference - estimation 

ηle c1assical approach to point and inte凹al esti­
mation ffiight be considered to have two limita­
tions. First, only the observed sample data 
cont口bute to our estimate of the population 
parameter. Any previous in岳ormation we have on 
the likely value of the parameter cannot easily be 
considered when determining our estimate. 
although our knowledge of the population fiom 
which we are sampling will infiuence the design 
of our sampling program (Chapter 7) , Second , the 
interval estimate we have obtained has a frequen 
tist interpretation - a certain percentage of confi 
dence intervals from repeated sampling will 
contain the fì.xed population parameter. The 
Bayesian approach to estimating parameters 
removes these limitations by formally incorpora仨
ing our prior knowledge , as degrees叫。ι.belief

(Chapter 1) , about the value ofthe parameter and 
by producing a probability statement about the 
parameter, e.g. there is a 95% probability thatμ 
lies within a certain interval 

BAYESIAN INFERENCE - ESTIMATION 

2.6.1 Bayesian estimation 
To estima te parameters in a Bayesian 仕'amework，

we need to make two major adjustments to the 
way we think about parameters and probabilities 
First, we now consider the parameter to be a 
random variable that can take a range of possible 
values , each with different probabilities or 
degrees•of.belief ofbeing true (Barnett 1999). 币1lS
contrasts with the dassical approach where the 
parameter was considered a fìxed. but unknown , 

quant1帘。 Dennis (1996), however, described 出e

parameter being sought as an unknown variable 
rather than a random variable and the prior and 
posterior distributions represent the probabilities 
that this unknown parameter might take differ. 
ent values. Second , we must abandon Qur frequen­
tist view of probability. Our interest is now only in 
the sample data we have , not in some long run 
hypothetical set of identical experiments (or 
samples). In Bayesian methods, probabilities can 
incorporate subjective degrees咱f.belief (Chapter 
1), although such opinions can still be quantified 
using probability distributions 

The basic logic of Bayesian inference for esti­
matìng a parameter is 

P!datal 8lP 的
(8I data) 二」二二』兰兰

P(data) 

where 

(J is the population parameter to be 

(2.16) 

estimated and is regarded as a random variable , 

p(创 is the "unconditional" prior probabili可
of 8, expressed as a probabili可 distribution 
summarizing our prior views about the 
probabili可 of 8 taking different values , 

P(data I 的 is the likelihood of observing the 
sample data for different values of 8，已xpressed
as a likelihood function (Section 2.4.1), 

P(data) is the expected value (mean) ofthe 
likelihood function; this standardization means 
that the area under the poste口or probabili可

distribution equals one, and 
P(8Idata) 且也e posterior probability of 8 

conditional on the data being obse凹'ed ，

expressed a probability distribution 
summarizing the probability of 0 taking 
difi岳rent values by combining 由epnor

probability distribution and the likelihood 
function 

27 
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Equation 2.16 can be re毛xpressed more simply 
as 

posterior probabili可民 likelihood x 
prior probability (2.17) 

because the denominator in Equation 2.15 , 

只data)， is a normalizing consta时. the mean ofthe 
likelihood function (Ellison 1996) 

2.6.2 Prior knowledge and probability 
Prior probability distributions measure the rela­
tive "strength ofbelief' in possible values ofthe 
parameter (Dennis 1996) and can be of two forms 
(Barnett 1999)。

1. Prior ignorance or only vague prior knowl­
edge, where we have little or no previous infor­
mation to suggest what value the parameter 
might take. While some Bayesians might argue 
that scientists will always have some prior infor­
mation , and that we will never be in a position 
of complete ignorance, prior ignorance is a 
conservative approach and helps overcome the 
criticism of Bayesian statistics that subjectively 
determined prior opinion can have too much 
influence on the inferential process. We can 
represent prior ignorance with a non-informa­
tive prior distribution, sometimes called a 
diffuse dist口bution because such a wide range of 
values of () is considered possible. The most 
typical diffuse p口or is a rectangular (uniform or 
且at) probability distribution. which says that 
each value ofthe parameter is equally likely. 

One problem WÎth uniform prior distribu-
tions is that they are improper, i.e. the probabil­
ity distribution does not integrate to one and 
therefore the probability of any range ofvalues 
might not be less than one. In practice , this is 
not a serious problem because improper priors 
can be combined with likelihoods to produce 
proper posterior distributions. When we use a 
non-informative prior, the posterior distribution 
of the parameter is direc t1y proportional to the 
likelihood function anyway. The uniform prior 
distribution can be considered a reference 
prior, a class of priors designed to represent 
weak prior knowledge and let the data. and 
therefore the likelihood. dominate the posterior 
distribution 

2. Substantial prior knowledge or belief repre­
sented by an informative p口or probability distri­
bution such as a normal or beta distributio口
The construction of these informative prior 
distributions is one ofthe most controversial 
aspects ofBayesian inference , especially ifthey 
are constructed from subjective opinion. Crome 
et a!. (1996) i1lustrated one approach based on 
surveying a small group ofpeople for 出e

opinions about the effects oflogging. Dennis 
(1996) and Mayo (1996) have respectively high 
lighted potential practical and philosophical 
issues associated with using subjective prior 
information 

2.6.3 Likelihood function 
The likelihood function p(data I 的， standardized 
by the expected value (mean) of likelihood fu口c­

tion lP(datall. is how the sample data enter 
Bayesian calculations. Note that the likelihood 
function is not strictly a probability distribution 
(Section 2.4.1). although we refer to it as the prob­
ability of observing the data for different values 
of the parameter. If we assume that our variable 
is normally distributed and the parameter of 
interest is the mean , the standardized likelihood 
function is a normal distribution with a mean 
equal to the mean of the sample data and a vari­
ance equal to the squared standard error of the 
mean ofthe sample data (Box & Tiao 1973. Ellison 
1996) 

2.6.4 Posterior probability 
All conc1usions 仕om Bayesian inference are 
based on the posterior probability distribution of 
the parameter. This posterior distribution repre­
sents our p口or probability distribution modified 
by the likelihood function. The sample data only 
enter Bayesian inference through the likelihood 
且lnction. Bayesian infere口ce is usually based on 
the shape of the posterior distribution, particu­
larly the range of values over which most of the 
probability mass occurs. The best estimate of 
the parameter is determined 仕om the mean of 
the posterior distribution. or sometimes the 
median or mode if we have a non-symmetrical 
posterior. 

Ifwe consider estimating a parameter (的 with
a normal prior distribution, then the mean of the 

F: 
normal posterior distribution of () is (Box & Tiao 
1973. Ellison 1996) 

ii~一二←一(wßo + w,y) 
Wo + W1 ' u v 

(2.18) 

where 80 is the mean ofthe prior distribution, ÿ is 
the mean of the likelihood function (i.e. sample 
mean 仕om data). Wo is the reciprocal of the esti­
mate of the prior va口anceσ02(1ls。斗， w1 is the 
re口procal of the sample variance times the 
sample size (n[s') and ηis the sample size. In other 
words , the posterior mean is a weighted average of 
the prior mean and the sample mean (Berry 1996) 
τhis poste口or mean () is our estima te of (), the 
parameter of interest 

The variance of the posterior distribution 
equals 

1 
u"=一-一一-一

WO+W1 
(2.19) 

Note that with a non-informative，自旺， prior the 
posterior distribution is determined entirely by 
the sample data and the likelihood functionτhe 
mean of the posterior then is y (the mean of the 
sample data) and the variance is 52阳 (the variance 
ofthe sample data divided by the sample size). 

The Bayesian analogues of frequentist con直­
dence intervals are termed Bayesian credible or 
probability intervalsτhey are also called highest 
density or probability regions because any value 
in the region or interval has a higher probabi日可
of occurring than any value outside. Ifwe have a 
normal posterior distribution for a parameter, 
Bayesian credible intervals for this parameter are: 

P(Õ-2vD空。:s 8 +2vD}二 0.95 (2.20) 

where D= 仕2 ， the variance of the posterior distri­
bution (Ellison 1996). Alternatively. the usual 
methods based on the t distribution can be used 
n叩inkler 1993). Note that becaus巳 the parameter 
IS consid盯ed a random variable in Bayesian infer­
ence , the interval in Equation 2.20 is telling us 
directly that there is a 95% probability that the 
value of the parameter falls within this range , 

based on the sample data. With a non-informative 
(flat) prior distribution. the Bayesian con直dence
mterval will be the same as the c1assical，仕equen­
trst. confidence interval and Edwards (1996) 
argued that the difference in interpretation is 
somewhat semantic. He recommended simply 
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reporting the interval and letting the reader inter­
pret it as required. Ifwe have a more informative 
prior distribution (i.e. we knew that some values 
of 6 were more likely than others). then the 
Bayesian credible interval would be shorter than 
the classical confidence interval 

2.6.5 Examples 
We provide a very simple example ofBayesian esti­
mation in Box 2.4, based on the data from Lovett 
et al. (2000) on the chemistry of forested water 
sheds. Another biological example of Bayesian 
estimation is the work of Carpenter (1990). He 
compared eight different models for f1ux ofpesti 
cides through a pond ecosystem. Each model was 
given an equal prior probability (0.125). data were 
col1ected 仕om an experiment using radioactively 
labeled pesticide and likelihoods were deter 
mined for each model 仕om the residuals after 
each model was fitted using OLS (see Chapter 2) 
He found that only one ofthe models had a poste­
rior probability greater than 0.1 (actually it was 
0.97. suggesting it was a very likely outcome) 

2.6.6 Other comments 
We would like to finish with some comments 
First, normal distributions are commonly used 岛r

both prior and posterior distributions and likeli­
hood 且lnctions for the same reasons as for c1assi­
cal estimation, especially when dealing with 
means. Other dist口butions can be used. For 
example. Crome et a!. (1996) used a mixture oflog­
normal distributions 且or an informative prior (see 
also Winkler 1993) and the beta distribution is 
commonly used as a prior for binomially distrib 
uted parameters 

Second, the data genera11y are much more 
influential over the posterior distribution than 
the pri肘" except when sample sizes , and!or the 
variance of the prior, are very small. Carpenter 
(1990) discussed Bayesian analysis in the context 
of large-scale perturbationεxperiments in 
ecology and he also argued that prior probabil­
ities had far less impact than the observed data on 
the outcome ofthe analysis and implied that the 
choice of prior probabilities was not cru口al

However. Edwards (1996) noted that if the prior 
standard deviation is very small, then differences 
in the prior mean could have marked effects on 
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Box 2.4 1 Worked example of Bayesian estimation: 
chemistry of forested watersheds 

To illustrate the Bayesian approach to estimation , we will revis吨 the earlier example 
of estimating the mea门 concentration of 50，:]一 in first and second order stream 
sites in the Catskill Mountains in New York State based on a sample of 39 sites 
(Love忧 e1 01. 2000). Now 、..ve will consider the mean concentration of 504

2
- a 

ran 才 om variable, or at 阳拭目 un阳。wn 旧门able (Dennis 1996) , and also make use 
ofρrior informa'扫on about this mean, i.e, we will estimate our mean from a Bayesian 
perspe出口ive. For comparison , we will also investigate the e百ect of more substantial 
p门or knowledge , in the form of a less variable prior probabil陀y distribution. We will 
follow the procedu陀 for 吕aye引an estimation from Box &丁iao (1973: see also Berry 

1996 and Ellison 1996) 

1. Using whatever information is avai阳ble (including subjective assessment 
see Crome et al. 1996), specify a prior probabil比'1 dist们bution for Y. Note that 
initial estimates of the parameters of this distribution will need to be speci们ed;a
normal prior requires an initial estimate of the mean and variance. Imagine we 
had sampled the central Catskill Mountains at a previous time so we had some 
p陪vious data that we could use tO set up a prior distribution. We assume吐 the

prior distr 坦山on of the concentration of 50/- was normal a 才 we used t阳

mean and the variance of the p陀、 ::>us sample as the paramete巧 of the Dric 
dist 才 bution. Tf卡 e prior distribution could also be a 门on-informative (fiat) one if no 

such previous information was available 
2. Collect a sample to provide an estimate of the ρarameter and its variance 

In our example , we had a sample of concentration of 50/- from 39 $护自ms and 

determine 才 t气 e sample mean and variance 
3. Determine the standardized likelihood function , which in this example is 

a normal distribution w比h a mean equal to the mean of the sample data 
and a variance equal to the squared standard error of the mean of t 飞 e sample 

data 
4, Determine the posterior probability distribution for the mean 

concentration of 504
2- , which will be a normal distribution because we used a 

normal 旷ior and likelihood function. The mean of this posterior distribution 
(Equation 2.18) is our estimate of population mea门 concentration of 5042 肌才

we can determ阳 C陀dible inte川als for this mean (Eq且tlon 2.20) 

High variance prior distribution 

Príor mean = 50.00, prior variance = 44.00 
Sampl怡e mean = 61.92. 5曰ample va盯r飞旧nce = 27.47, 门 ~39 

Using Equations 2.18.2.19 and 2.20, substituting sample estimates where 

appropnate 
wo~0.023 

wl 二1.419

Posterior mean = 61.73, posterior variance = 0.69, 95% Bayesian probability 

interval 二 60.06 to 62.57 
Note that the posterior distribution has almost the same estimated mean as 
the sample. so the posterior is determined almost entirely by the sample data 
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Low variance prior distribution 

If we make our prior estimate of the mean much more preαse: 
Prior mean = 50.00, prior variance = 1 0.00 
Sample mean ~ 6 1.92，日mple variance = 27.47, n = 39 

wo~O.IOO 

wl~I .4 19 

Posterior mean = 61.14, posterior variance = 0.66, 95% Bayesian probability 
interval ~59.5 1 to 62.76 

Now the prior dÎ5tribution has a greater influence on the posterìor than p陪W
。usl 川 with the posterior mean mo陀 than half one unit lowe r. In fad, the more dif­
ferent the prior mean Îs from the sample mean, and the more p陀cise our estimate 
of白e pnor mean 巴， I.e 白e lower the prior variance , t门 e mc陀 the prior will in刊u

ence the posterior relative to the data 
Note that if we assume a 轩at prio r, the po5terior mean is just the mean of t门 e

data (61.92) 

the posterior mean, irrespective of the data. He 
described this as "editorial'\where the results of 
the analysis are mainly opinion 
币11时， ifa non-in岛rmative prior (like a rectan­

gular distribution) is used , and we assume the 
data are 仕om a normally distributed population, 

then the posterior distribution will be a normal 
(or t) distributionjust like in classical estimation, 

i.e. using a flat prior will result in the same esti­
mates as classical statistics. Forεxample， if we 
wish to use Bayesian methods to estimateμ， and 

we use a rectangular prior distribution, then the 
posterior distribution will turn out to be a normal 
distribution (if O" is known) or a t distribution (ifσ 
is unknown and estimated 仕om 5, which means 
we need a prior distribution for 5 as well) 

Finally, we have provided only a very b 口ef

introduction to Bayesian methods for estimation 

and illustrated the principle with a simple 
example. For more complex models wi由旧o or 
more parameters , calculating the posterior distri 
bution is dif:且口llt. Recent advances in this area 
use various samp1ing algorithms (e.g. Hastings 
Metropolis Gibbs sampler) as part ofMarkov chain 
Monte Carlo nlethods. These techniques are 
beyond the scope of this book - Barnett (1999) and 
Gelman et a1. (1995) provide an introduction 
although the details are not for the mathemati 
cally challenged. The important point is that once 

we get beyond simple estimation problenls , 

Bayesian methods can involve considerable statis 
tical complexity 

Other pros and cons related to Bayesian infer 

ence , particularly in comparison with classical 
frequentist inference, will be considered in 
Chapter 3 in the context of testing hypotheses 
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