练习一

- 1、名词解释: 达尔文主义、新达尔文主义、质量性状、数量性状、基因座位、基因、基因型、表现型、显性性状、隐性性状、共显性、纯系理论、孟德尔遗传学、群体遗传学、数量遗传学、多基因假说、"绿色革命"、持久抗性
- 2、若等位基因 A 相对于 a 为显性,两个亲本的基因型分别为 AA 和 aa,那么 F_2 群体中显性个体的基因型既可能为 AA 也可能为 Aa,遗传上常用 F_2 个体产生的 F_3 家系中是否有显隐性的分离来判断显性 F_2 个体的基因型是 AA 或是 Aa。
- (1) 如果每个 F₃家系仅种植 5 个单株, 计算把 Aa 基因型误判成 AA 的概率是多大?
- (2) 如果要保证基因型 Aa 误判成 AA 的概率低于 0.05, F₃家系至少要种植多少个单株?
- (3) 如果要保证误判成概率低于 0.01, F3 家系至少要种植多少个单株?
- 3、下表是两个自交系以及它们的杂种 F_1 和 F_2 群体中,单株株高的调查数据。

群体	样本量	单株株高 (cm)
自交系A	10	155, 161, 150, 164, 165, 161, 160, 158, 166, 164
自交系B	10	97, 109, 92, 103, 109, 104, 98, 106, 102, 110
F_1	10	156, 148, 140, 150, 148, 147, 146, 155, 148, 150
F_2	30	89, 157, 149, 169, 123, 158, 151, 83, 167, 154, 152, 167, 116, 146, 97, 147,
		162, 159, 111, 143, 144, 124, 137, 156, 80, 169, 157, 152, 157, 116

- (1) 计算每个群体株高的平均数和方差;
- (2) 假定不同群体中有着相同的误差方差,利用自交系 A、自交系 B 和 F_1 群体的方差,估计误差方差;
- (3) 利用(2) 估计出的误差方差,估计F₂群体的遗传方差和广义遗传力。
- 4、下表为 East (1911) 玉米穗长(cm)的杂交试验中亲本、 F_1 和 F_2 世代的次数分布图(最后一行为 F_2 群体穗长的频率,累计频率为 1)。

穗长	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	n
Pı	4	21	24	8														57
\mathbf{F}_{1}					1	12	12	14	17	9	4							69
P_2									3	11	12	15	26	15	10	7	2	101
\mathbf{F}_2			4	5	22	56	80	145	129	91	63	27	17	6	1			646
F ₂ 分7		E	0.01	0.01	0.03	0.09	0.12	0.22	0.20	0.14	0.10	0.04	0.03	0.01	0.00			

- (1) 计算四个群体中,各自的穗长平均数和方差;
- (2) 假定亲本 P_1 穗长的基因型值近似为 7cm, P_2 穗长的基因型值为近似 17cm, 在多基因假设成立并不考虑环境随机效应的条件下, 绘出 1 对、2 对和 3 对基因分离时 F_2 世代穗长的

柱形分布图。多少对基因的独立分离就可以基本解释上表中 F_2 的观测分布?

5、下表是孟德尔杂交试验 F_2 群体中两种表现型的观测值,亲本基因型是纯合的。试对 F_2 群体的两种表现型做 3:1 的分离比适合性检验。

亲本性状		F ₁ 性状	F ₂ 表型观测值	F ₂ 表现分离比		
圆形 × 皱形	(籽粒形状)	圆形	5474 圆形、1850 皱形	2.96:1		
黄色 × 绿色	(籽粒颜色)	黄色	6022 黄色、2001 绿色	3.01:1		
紫色 × 白色	(花色)	紫色	705 紫色、224 白色	3.15:1		
圆鼓 × 皱缩	(豆荚形状)	圆鼓	882 黄色、299 绿色	2.95:1		
绿色 × 黄色	(未成熟豆荚颜色)	绿色	428 绿色、152 黄色	2.82:1		
轴部 × 顶部	(花荚位置)	轴部	651 轴部、207 顶部	3.14:1		
长茎 × 短茎	(茎长短)	长茎	787 长茎、277 短茎	2.84:1		

- 6、一个纯合亲本的籽粒形状为圆形、籽粒颜色为黄色,另一个纯合亲本的籽粒形状为皱形、籽粒颜色为绿色,它们间的杂交 F_1 代为圆形、黄色, F_2 的表型观测数为:圆形和黄色 315、圆形和绿色 108、皱形和黄色 101、皱形和绿色 32。
- (1) 对籽粒形状和籽粒颜色两个性状分别做 3:1 分离比检验;
- (2) 对两个性状的做 9: 3: 3:1 分离比检验;
- (3)根据 9: 3: 3:1 分离比检验的结果,判断籽粒形状基因和籽粒颜色基因是否存在遗传连锁关系。
- 7、R. A. Fisher 对遗传学和统计学的重要贡献有哪些? Fisher 为什么怀疑 Mendel 曾对他 1866 年发表的植物杂交试验数据做过修正或删除?
- 8、结合 CIMMYT 小麦育种的经验和成就,解释什么是穿梭育种(Shuttle breeding),并简要说明穿梭育种在 CIMMYT 小麦育种中的贡献有哪些?
- 9、植物育种的一般过程是什么?常用的育种方法有哪些?